UTILIZAÇÃO DE TÉCNICAS ELETROQUÍMICAS NA AVALIAÇÃO DA POROSIDADE DE CAMADAS FOSFATIZADAS

Célia A. Lino dos Santos⁽¹⁾, Edwilson Leite⁽²⁾, Antenor Ferreira Filho⁽²⁾ e Zehbour Panossian^{(1)(*)}

Trabalho submetido em Abril de 2006 e aceite em Junho de 2006

RESUMO

A porosidade de camadas de fosfato de zinco sobre aço baixo carbono, processadas em diferentes tempos de imersão (30 s, 45 s e 85 s), foi avaliada por meio das seguintes técnicas eletroquímicas: polarização anódica (P_A), polarização linear catódica (P_{LC}), cronoamperometria (C_A), voltametria cíclica (VC), espectroscopia de impedância eletroquímica (EIE); e também por microscopia eletrônica de varredura (MEV). As técnicas de P_A , VC e EIE foram exploradas qualitativamente, enquanto que as de P_{LC} e P_A 0 quantitativamente. As análises qualitativas (P_A 1, VC, EIE) indicaram que a porosidade das camadas fosfatizadas aumentou com a diminuição do tempo de imersão. Os valores porcentuais de porosidade (P_{LC} 1, P_A 2) e as imagens de MEV confirmaram estes resultados.

Palavras Chave: Fosfato de Zinco, Porosidade, Técnicas Eletroquímicas

USE OF ELECTROCHEMICAL TECHNIQUES IN POROSITY PHOSPHATE COATINGS EVALUATION

ABSTRACT

The porosity of zinc phosphate layers on low carbon steel processed in different immersion times (30 s, 45 s and 85 s) was evaluated through the following electrochemistry techniques: anodic polarization (P_A), cathodic linear polarization (P_{CL}/P_{LC}), cronoamperometry (P_{CL}/P_{LC}), cronoamperometry (P_{CL}/P_{LC}), cyclic voltammetric (P_{CL}/P_{LC}), spectroscopy impedance electrochemistry (P_{CL}/P_{LC}); and also scanning electron microscopy (P_{CL}/P_{LC}). The techniques P_{CL}/P_{LC} and P_{CL}/P_{LC} and P

Key Words: Zinc Phosphate, Porosity, Electrochemistry Techniques

1. INTRODUÇÃO

As camadas fosfatizadas apresentam grande importância industrial e são utilizadas em diversas aplicações, como por exemplo: proteção temporária contra a corrosão, pré-tratamento para pintura; redutor de atrito entre superfícies; lubrificante em operações de deformação de superfícies metálicas e como isolante elétrico, sendo que, as características das camadas de fosfato é que determinam a sua aplicabilidade e desempenho. O tipo de fosfato, a espessura, a rugosidade e a porosidade da camada são fatores importantes na avaliação e na definição do seu emprego [1]. Dos fatores citados, a porosidade possui importância destacada devido à dificuldade existente na sua avaliação e quantificação.

A literatura registra vários métodos para a avaliação da porosidade [1-3]. Os mais simples são os chamados métodos químicos: o método de deposição de cobre e a utilização do indicador ferroxil. O primeiro consiste em verificar o tempo de aparecimento de depósitos de cobre através dos poros da camada de fosfato, quando um corpode-prova é imerso em uma solução de sulfato de cobre, e o segundo, em contar o número de pontos azuis resultantes da reação entre o substrato ferroso e o indicador, que também se dá através da porosidade da camada.

Os ensaios de porosidade pelo método químico são práticos e de fácil execução, porém, segundo Machu apud Biestek and Weber [2], somente os ensaios eletroquímicos são capazes de fornecer dados quantitativos sobre a porosidade da camada de fosfato.

Os ensaios eletroquímicos seguem o mesmo raciocínio utilizado para os ensaios químicos, as reações de transferência de carga somente ocorrem através dos poros presentes na camada fosfatizada.

Machu apud Biestek and Weber [2] desenvolveu um método que consiste na imersão de um corpo-de-prova fosfatizado em uma célula eletrolítica contendo uma solução de sulfato de sódio 2,0 mol L⁻¹, contra-eletrodo de platina e eletrodo de referência. Este método é baseado na aplicação de um potencial anódico ao corpo-de-prova. Inicialmente a corrente é elevada, pois o aço exposto nos poros está ativo. O aço passiva-se, com o decorrer do tempo, fato que é percebido pela diminuição dos valores de corrente que atingem valores constantes (corrente de passivação). O tempo decorrido entre a aplicação do potencial anódico e a estabilização da corrente é o tempo de passivação citado por Machu. A partir da expressão desenvolvida por Müller apud Biestek and Weber [2], calcula-se a porosidade da camada de fosfato.

⁽º) Instituto de Pesquisa Tecnológicas do Estado de São Paulo S. A. – IPT, Laboratório de Corrosão e Proteção – LCP, Av. Prof. Almeida Prado, 532 Prédio 53 – 1.º andar, CEP: 05508-901 São Paulo – SP Brasil. Telefone: 55 (11) 3767-4044; fax: 55 (11) 3767-4036.

a Brasmetal Waelzholz S. A. Ind. & Com., Rua Goiás, 501 CEP 09941-690, Vila Oriental – Diadema – SP Brasil. Telefone: 55 (11) 4070-9500; fax: 55 (11) 4070-2334.

^{*} A quem a correspondência deve ser dirigida, e-mail: zep@ipt.br

A literatura registra o emprego de outras técnicas eletroquímicas. Zurilla and Hospadaruk [4] utilizaram a polarização potenciodinâmica para a avaliação da porosidade de camadas fosfatizadas. Polarizações lineares com varreduras catódicas foram feitas com o objetivo de determinar a densidade de corrente de redução do oxigênio. Os autores verificaram que as amostras de aço-carbono fosfatizadas que tiveram pior desempenho nos ensaios de névoa salina, apresentaram as maiores densidades de corrente de redução de oxigênio (as correntes foram medidas no potencial de –0,550 V/ECS).

Kiss and Coll-Palagos [5] empregaram a voltametria cíclica para avaliar a porosidade de camadas fosfatizadas. Aços revestidos com fosfato de zinco foram estudados. Os ensaios de voltametria cíclica varreram a faixa de potencial entre -1,500 V/ECS e -0,250 V/ECS em solução de NaCl 5% (saturada com ar) e pH = 6,5. O aparecimento de um pico de corrente ao redor de -0,85 V/ECS indica o grau de porosidade da camada fosfatizada. A ausência deste pico significa que a porosidade é muito baixa. Quanto maior a porosidade mais cedo aparecerá o pico (menor número de ciclos) e maior será a sua altura.

Losch and Schultze [6] determinaram a área livre de amostras de aço fosfatizado empregando voltametria cíclica, medidas de capacitância, espectroscopia de impedância eletroquímica e microscopia eletrônica de varredura. Os mesmos autores empregaram espectroscopia de impedância eletroquímica e polarização potenciodinâmica para estudar os processos envolvidos durante o processo de fosfatização [7].

Nair and Subbaiyan [8] empregaram a voltametria cíclica e a densidade de corrente de redução do oxigênio nos estudos envolvendo diferentes camadas de fosfato sobre aço doce sem e com passivação com solução de cromato, e também, para a avaliação do uso de tensoativos nos banhos de fosfatização.

Ponte e colaboradores [9] estudaram camadas fosfatizadas sobre aço zincado por meio da voltametria de dissolução anódica (VDA). A porosidade de camadas fosfatizadas foi determinada comparando-se as cargas obtidas das curvas anódicas para o aço zincado sem e com camada fosfatizada, sendo que os valores foram expressos em percentagem.

A técnica de espectroscopia de impedância eletroquímica vem sendo empregada tanto para estudar os processos durante a fosfatização como para a avaliação de camadas fosfatizadas sobre aço-carbono e sobre aço-carbono zincado [10-14]. Esta mesma técnica também tem sido empregada nos estudos de sistemas (aço-carbono, aço-carbono galvanizado) pré-pintados e deformados mecanicamente [15-17].

Kwiatkowski [18] avaliou a porosidade de camadas fosfatizadas por meio de métodos voltamétricos, espectroscopia de impedância eletroquímica, ruído eletroquímico e sonda Kelvin. O autor, a partir destes resultados, considera que o estado da superfície do aço fosfatizado na base do poro é diferente daquela observada para o aço doce livre de fosfato. Estas diferenças observadas estão relacionadas às várias etapas anteriores ao processo de fosfatização propriamente dito e que resultam em uma superfície metálica mais ativada no fundo do poro.

Este trabalho é um estudo comparativo entre cinco técnicas eletroquímicas, a saber: polarização anódica (P_A), polarização linear catódica (P_{LC}), cronoamperometria (C_A), voltametria cíclica (VC), espectroscopia de impedância

eletroquímica (EIE) para a determinação da porosidade de camadas de fosfato de zinco obtidas sobre aço-carbono, utilizando-se um banho comercial de fosfato de zinco, em diferentes tempos de imersão, 30 s, 45 s e 85 s. As camadas fosfatizadas obtidas foram observadas em um microscópio eletrônico de varredura.

2. PARTE EXPERIMENTAL

2.1. Material

As chapas de aço-carbono fosfatizadas (eletrodos de trabalho) foram produzidas, em planta industrial de fosfatização de tiras em processo contínuo, a partir de um banho comercial de fosfato de zinco tradicional, com os tempos de imersão de 30 s, 45 s e 85 s.

As soluções eletrolíticas utilizadas foram preparadas a partir de reagentes P.A. e água deionizada. Foram empregadas soluções de NaOH 0,01 mol L $^{-1}$, NaCl 0,85 mol L $^{-1}$ (solução de NaCl 5%) e Na $_2$ SO $_4$ 0,1 mol L $^{-1}$ naturalmente aeradas e mantidas à temperatura ambiente de (25 ± 2) $^{\rm o}$ C.

Foram utilizadas três células eletroquímicas de vidro do tipo:

- célula plana, fabricada pela PAR, com contra-eletrodo de tela de platina, eletrodo de referência de calomelano saturado (ECS) e eletrodo de trabalho (chapa fosfatizada) com área exposta de 1,0 cm², utilizada para as técnicas de PA, PLC e CA;
- copo, com contra-eletrodo de tela de platina, eletrodo de referência de calomelano saturado (ECS) e eletrodo de trabalho (chapa fosfatizada) com área exposta de 16,0 cm², utilizada para a técnica de VC;
- célula de impedância, fabricada pela PAR, com contra-eletrodo de tela de platina, eletrodo de referência de calomelano saturado (ECS) e eletrodo de trabalho (chapa fosfatizada) com área exposta de 32,0 cm², utilizada para a técnica de EIE.

Os ensaios eletroquímicos, realizados em triplicata para as diferentes técnicas utilizadas, foram realizados empregando-se um potenciostato/galvanostato EG&G PAR modelo 273 A acoplado a um analisador de respostas em freqüência EG&G PAR modelo 1025.

2.2. Ensaios

Polarização anódica

Foram realizadas polarizações anódicas, para aço-carbono sem e com camadas fosfatizadas, e os resultados foram expressos em um gráfico do potencial, E (V/ECS), em função do logaritmo da densidade de corrente, i (A cm $^{-2}$). Polarizou-se de -1,00 V/ECS a -0,250 V/ECS, com velocidade de varredura de 1,0 mV s $^{-1}$, em meio de NaCl 0,85 mol L $^{-1}$.

A avaliação da porosidade foi realizada comparando-se os valores da densidade de corrente ao final da polarização. O maior valor de densidade de corrente é apresentado pelo aço-carbono sem fosfato. Quanto mais próximo do valor da densidade de corrente do aço-carbono sem fosfato for o valor da densidade de corrente encontrada para o sistema aço-carbono com fosfato, mais porosa será a camada fosfatizada.

Polarização linear catódica

Foram realizadas polarizações lineares catódicas, para aço-carbono sem e com camadas fosfatizadas, e os resultados foram expressos em um gráfico de potencial, E (V/ECS), em função da densidade de corrente, i (μ A cm $^{-2}$). Polarizou-se de -0,500 V/ECS a -1,100 V/ECS, com velocidade de varredura de 1,0 mV s $^{-1}$, em meio de NaOH 0,01 mol L $^{-1}$. Determinou-se a densidade de corrente para o potencial de -0,550 V/ECS que corresponde à reação de redução do oxigênio sobre o substrato de aço-carbono. A porosidade ($P_{\rm PLC}$) foi calculada segundo a Equação 1:

$$P_{PLC}(\%) = \frac{i_{fosfato}}{i_{aco-carbono}}$$
.100 Equação 1

onde:

 $i_{fosfato}$: densidade de corrente do aço-carbono fosfatizado para o potencial de -0,550 V/ECS;

 $i_{aço-carbono}$: densidade de corrente do aço-carbono sem fosfato para o potencial de -0,550 V/ECS.

A avaliação da porosidade da camada foi feita a partir dos valores de densidade de corrente obtidos em -0,550 V/ECS. Quanto menor a densidade de corrente, menor será o valor de P_{PLC} e conseqüentemente, menos porosa será a camada de fosfato.

Cronoamperometria

Foram realizados ensaios cronoamperométricos, empregando-se aço-carbono sem e com camada fosfatizada. Aplicou-se às interfaces estudadas, em meio de NaOH 0,01 mol $\rm L^{-1}$, o potencial de $\rm -0,550$ V/ECS por 600 s. Foram adquiridos valores de densidade de carga obtidos a partir da integração dos gráficos de densidade de corrente ($\it i$) contra tempo ($\it s$). A porosidade ($\it P_{CA}$) foi calculada segundo a Equação 2:

$$P_{CA}(\%) = \frac{\sigma_{\text{fosfato}}}{\sigma_{\text{aço-carbono}}}$$
.100 Equação 2

onde:

 $\sigma_{fosfato}$: densidade de carga da camada fosfatizada; $\sigma_{aco\text{-}carbono}$: densidade de carga do aço-carbono.

Para a C_A , emprega-se raciocínio análogo ao utilizado para a P_{LC} , quanto menor for o valor da densidade de carga obtida para o potencial de -0,550 V/ECS, menor será a porosidade da camada fosfatizada.

Voltametria cíclica

Os ciclos voltamétricos foram aplicados entre os potenciais $E_{\rm inicial} = -1,500$ V/ECS, $E_{\rm inversão} = -0,250$ V/ECS, $E_{\rm final} = -1,500$ V/ECS, com velocidade de varredura de 20,0 mV s⁻¹, em meio de NaCl 0,85 mol L⁻¹. Foram realizados vários ciclos consecutivos para verificar o comportamento de aço-carbono fosfatizado ao longo das perturbações impostas à interface em estudo. Os voltamogramas cíclicos fornecem dados qualitativos sobre as camadas fosfatizadas. Quanto maior for o número de ciclos realizados sem o aparecimento dos picos de oxidação do Fe a Fe²⁺, menor será a porosidade da camada de fosfato.

Espectroscopia de impedância eletroquímica

Utilizou-se como meio eletrolítico a solução de sulfato de sódio 0,1 mol.L $^{-1}$. A amplitude da perturbação foi de 10 mV, adquiriram-se oito pontos por década e a faixa de frequência foi de 50 kHz a 10 mHz. A avaliação da porosidade das camadas fosfatizadas foi feita considerando-se os valores de resistência de transferência de carga (R_{tc}) apresentados pelos sistemas estudados (quanto maior o valor de R_{tc} menor a porosidade de camada) e também pela análise dos valores de ângulo de fase.

Microscopia Eletrônica de Varredura

As micrografias foram obtidas em um Microscópio Eletrônico de Varredura JEOL JSM 5200. As imagens foram geradas por meio de elétrons secundários.

3. RESULTADOS E DISCUSSÃO

3.1 Ensaios eletroquímicos

As curvas de P_{LA} para o aço-carbono sem e com camadas fosfatizadas, obtidas a diferentes tempos de imersão (30 s, 45 s e 85 s), são apresentadas na Figura 1.

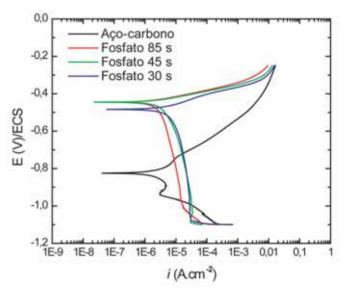


Fig. 1 – Curvas de polarização linear anódica para o açocarbono sem e com camadas fosfatizadas. Tempos de imersão: 30 s, 45 s e 85 s. Célula plana, área exposta: 1,0 cm², meio: NaCl 0,85 mol L-1.

Observa-se que as camadas de fosfato estudadas conferem ao aço-carbono uma proteção contra a corrosão, visto que os valores do potencial de corrosão ($E_{\rm corr}$) destas camadas são cerca de 0,400 V mais positivos que o $E_{\rm corr}$ do aço-carbono. Porém, nota-se que esta proteção é pouco efetiva uma vez que os valores de corrente para os sistemas sem e com camada fosfatizada são semelhantes ao final da polarização.

Esta proteção, conferida pala camada de fosfato, é devida à barreira física que ela constitui, mas, como esta apresenta porosidades, a ação protetiva torna-se bastante

Tabela 1Valores de densidade de corrente para o potencial final de -0,250 V/ECS.

Substratos	i (μA cm ⁻²)
Aço-carbono	0,0164
Aço-carbono fosfatizado 30 s	0,0153
Aço-carbono fosfatizado 45 s	0,0131
Aco-carbono fosfatizado 85 s	0,0095

frágil. Na Tabela 1, apresentam-se os valores de densidade de corrente para os sistemas estudados ao final da polarização em –0,250 V/ECS. Pode-se observar que os valores de densidade de corrente são menores para o tempo de imersão de 85 s e maiores para o tempo de 30 s. Desta maneira, percebe-se que a camada obtida após imersão por 85 s se mostra menos porosa, seguida das camadas obtidas a 45 s e 30 s, respectivamente, sendo que a camada obtida a 30 s apresenta corrente muita próxima àquela apresentada pelo aço-carbono sem revestimento.

Na Figura 2, apresentam-se as curvas de P_{LC} para o aço-carbono sem e com camadas fosfatizadas, para os diferentes tempos de imersão de 30 s, 45 s e 85 s.

Observa-se que as densidades de corrente para as camadas fosfatizadas são menores do que as referentes ao aço-carbono sem revestimento. Na Tabela 2, encontram-se os valores de densidade de corrente, para o potencial de $-0,550\,$ V/ECS e os dados calculados para a porosidade (P_{PLC}).

Os dados mostrados, na Tabela 2, revelam que a camada fosfatizada, obtida em 85 s, se mostra a menos porosa, porque a corrente determinada para esta condição

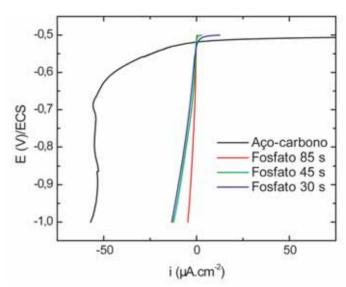


Fig. 2 – Curvas de polarização linear catódica para o açocarbono sem e com camadas fosfatizadas para os tempos de imersão de 30 s, 45 s e 85 s. Célula plana, área exposta: 1,0 cm², meio: NaOH 0,01 mol L⁻¹.

Substratos	i (μA cm ⁻²)	P _{PLC} (%)
Aço-carbono	-24,13±0,10	_
Aço-carbono fosfatizado 30 s	-0,60±0,14	2,49
Aço-carbono fosfatizado 45 s	-0,55±0,07	2,28
Aço-carbono fosfatizado 85 s	-0,22±0,03	0,91

foi a menor. Os valores de corrente apresentam elevado desvio experimental para os tempos de imersão de 30 s e 45 s. Assim, os valores de porosidade calculados para estas condições situam-se dentro do erro experimental e são maiores que as verificadas para o tempo de 85 s. A técnica de PLC diferenciou as camadas de fosfato, sendo que, a menor porosidade observada foi para a camada obtida em 85 s.

Na Fig. 3, apresentam-se as curvas cronoamperométricas para o aço-carbono sem e com camadas fosfatizadas, para os diferentes tempos de imersão de 30 s, 45 s e 85 s.

As curvas cronoamperométricas apresentam baixas densidades de corrente para as camadas fosfatizadas, semelhantes ao comportamento visto para as curvas de P_{LC} . Na Tabela 3, apresentam-se os valores das densidades de carga obtidas a partir da integração da densidade de corrente contra o tempo, e também, dos valores de porosidade calculados.

O menor valor de densidade de carga e, consequentemente, de porosidade foi obtido para o tempo de

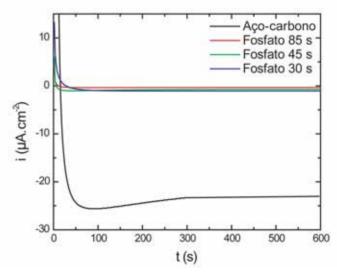


Fig. 3 – Curvas cronoamperométricas para o aço-carbono sem e com camada fosfatizada para os tempos de imersão de 30 s, 45 s e 85 s. Célula plana, área exposta: 1,0 cm², meio: NaOH 0,01 mol L⁻¹.

 Tabela 3

 Valores médios das densidades de carga e valores de porosidade obtidos a partir da técnica cronoamperométrica.

Substratos	σ (mC cm ⁻²)	P _{CA} (%)
Aço-carbono	5,213 ± 0,046	_
Aço-carbono fosfatizado 30 s	0,494 ± 0,034	9,47
Aço-carbono fosfatizado 45 s	0,413 ± 0,072	7,92
Aço-carbono fosfatizado 85 s	0,1900 ± 0,0010	3,64

imersão de 85 s, conforme a Tabela 3. Os desvios experimentais observados nos ensaios cronoamperométricos são considerados baixos, exceto para a condição de 45 s. Desta maneira, os valores de porosidade calculados para as condições 30 s e 45 s situam-se dentro do erro experimental.

Os resultados experimentais obtidos para as técnicas de P_{I C} e C_A apresentam desvios experimentais elevados para as camadas fosfatizadas nos tempos de imersão de 30 s e 45 s. É interessante ressaltar que para o tempo de imersão de 85 s, os valores dos desvios experimentais foram baixos para ambas as técnicas. Desta maneira, conclui-se que os procedimentos experimentais adoptados estão correctos e os tempos de imersão de 30 s e 45 s geram camadas porosas, conforme pode ser constado nas Tabelas 2 e 3, e possivelmente irregulares, visto que os resultados experimentais mostram-se com elevados desvios. As técnicas de P_{I C} e C_A são concordantes em mostrar que a camada fosfatizada obtida com tempo de imersão de 85 s é a menos porosa e as obtidas a 30 s e 45 s são mais porosas, porém, os valores de porosidade obtidos são diferentes para cada técnica.

Na Figura 4, apresentam-se as curvas voltamétricas para os sistemas estudados, as quais se referem ao quinto ciclo voltamétrico para o tempo de imersão de 85 s, ao quarto para o tempo de imersão de 45 s e ao terceiro para o tempo de imersão de 30 s.

Os picos de oxidação de ferro surgem no quinto ciclo, para o tempo de imersão de 85 s, fato que denota a necessidade de um tempo maior para a ocorrência da oxidação do substrato, mostrando que o maior tempo de imersão gera uma camada de fosfato com menor porosidade e maior

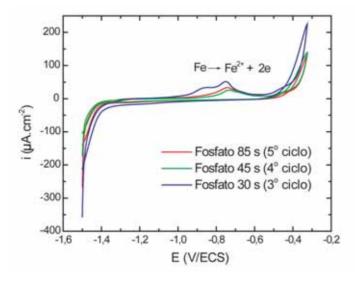


Fig. 4 – Voltamogramas cíclicos para os tempos de imersão de 85 s, 45 s e 30 s. Célula tipo copo, área exposta: $16,0~\text{cm}^2$, meio: NaCl 0,85 mol L $^{-1}$.

proteção ao substrato. Para o tempo de imersão de 45 s, os picos de oxidação do ferro surgem no quarto ciclo, demonstrando uma maior porosidade desta camada em relação a anterior. Os picos de oxidação do ferro ocorrem no terceiro ciclo, para o tempo de imersão de 30 s, o que caracteriza esta camada como a mais porosa, uma vez que os picos de oxidação do ferro surgem com o menor tempo de ensaio (terceiro ciclo) e a densidade de corrente é a maior observada dentre os sistemas estudados.

Na Figura 5, apresenta-se o diagrama de impedância de Nyquist para o aço-carbono sem fosfato.

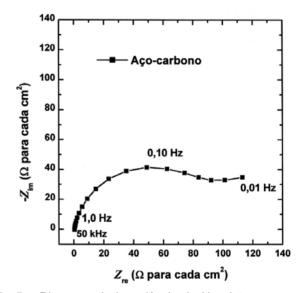


Fig. 5 – Diagrama de impedância de Nyquist para o aço-carbono sem fosfato. Célula de impedância, área exposta: $32,0~{\rm cm^2},~{\rm meio:}~{\rm Na_2SO_4}~0,1~{\rm mol}~{\rm L^{-1}}.$

Observa-se, na Figura 5, que o aço-carbono sem revestimento apresenta um arco capacitivo achatado (da ordem de Ω para cada cm²) e que não fecha, o que indica que vários fenômenos estão ocorrendo em sua superfície como reações de transferência de carga, transporte de massa e solubilização dos produtos de corrosão, frequentemente observados nos estudos de corrosão do aço-carbono.

Apresentam-se, na Figura 6, os diagramas de impedância de Nyquist para os sistemas fosfatizados empregando-se os três tempos de imersão estudados.

Os diagramas de impedância, vistos na Figura 6, mostram arcos capacitivos (da ordem de kW para cada cm²), os quais, apresentam valores de impedância real, Z_{Re} , e impedância imaginária, Z_{Im} , mil vezes superiores aos observados para o aço-carbono sem fosfato (Figura 6). Pode-se verificar que a camada fosfatizada com tempo de imersão de 30 s apresenta valores de Z_{Re} e Z_{Im} superiores ao aço-carbono sem fosfato, porém, muito inferiores às camadas com 45 s e 85 s de imersão. Assim, as camadas

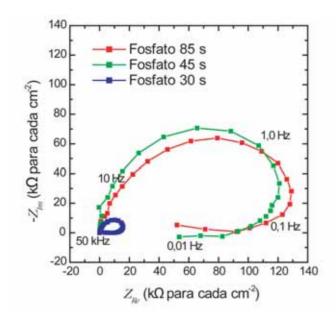


Fig. 6 – Diagrama de impedância de Nyquist para o aço-carbono fosfatizado empregando-se os tempos de imersão de: 85 s, 45 s e 30 s. Célula de impedância, área exposta: $32,0 \text{ cm}^2$, meio: $Na_2SO_4 \ 0,1 \text{ mol } L^{-1}$.

de fosfato que melhor recobriram o substrato foram aquelas com tempos de imersão de 45 s e 85 s, seguida da camada de 30 s. Os diagramas de Nyquist indicaram que a porosidade das camadas de 45 s e 85 s são semelhantes e a camada de 30 s apresenta maior porosidade.

Considerações sobre as técnicas eletroquímicas empregadas

As cinco técnicas empregadas mostraram as características existentes entre as interfaces aço-carbono/eletrólito e aço-carbono fosfatizado/eletrólito. Em todas as técnicas ficou evidente o efeito que as camadas de fosfato estudadas produziram sobre o substrato de aço-carbono, seja na variação positiva do E_{corr} , na diminuição dos valores de i e σ , no perfil voltamétrico, ou, nos valores de resistência de transferência de carga. Todas as técnicas utilizadas foram unânimes em apontar a camada de 30 s como a mais porosa, porém, foram observados resultados que não distinguiram as camadas de 30 s e 45 s (P_A , P_{LC}) ou as camadas de 45 s e 85 s (EIE).

A técnica de cronoamperometria distinguiu as camadas entre si, porém, os valores porcentuais de porosidade foram mais elevados comparados aos valores obtidos por P_{LC} . A voltametria cíclica diferenciou estas camadas com clareza, pois os picos de oxidação do Fe a Fe²⁺ ocorreram em diferentes ciclos para cada uma das camadas, sendo possível fazer uma avaliação mais precisa da porosidade.

3.2 Microscopia eletrônica de varredura

As camadas fosfatizadas foram observadas em um microscópio eletrônico de varredura e as imagens obtidas são apresentadas na Figura 7.

Observa-se, na Figura 7, que a camada de fosfato obtida para o tempo de 85 s de imersão apresenta cristais grandes, com formato de lamelas intercaladas por formas aciculares distribuídas homogeneamente; para 45 s verificam-se cristais médios e com distribuição homogênea entre cristais lamelares e aciculares; para 30 s os cristais aciculares são longos e não se encontram homogeneamente distribuídos entre as lamelas. As imagens revelam que as camadas obtidas a 85 s e 45 s apresentam uma distribuição homogênea de cristais enquanto que a obtida a 30 s possui uma distribuição irregular, sendo que estes cristais aparentam um menor crescimento tridimensional. Esta observação mostra-se concordante com os resultados dos ensaios eletroquímicos que apontou a camadas de 30 s de imersão como a mais porosa.

4. CONCLUSÕES

As técnicas eletroquímicas são úteis para o estudo da porosidade de camadas fosfatizadas, sobretudo, por não dependerem exclusivamente da observação visual.

As técnicas eletroquímicas empregadas, P_A, P_{LC}, C_A, VC e EIE, mostraram-se eficientes para a determinação da porosidade e foram unânimes em apontar a camada de fosfato de zinco obtida para o tempo de imersão de 30 s como a mais porosa e a obtida a 85 s como a menos porosa. A voltametria cíclica produziu resultados concordantes com as demais técnicas estudadas e diferenciou de maneira clara, por meio do número de ciclos, a porosidade das camadas fosfatizadas. Por ser uma técnica eletroquímica bastante conhecida e permitir ensaios de curta duração, a voltametria cíclica mostra-se uma boa alternativa para a avaliação da porosidade de camadas fosfatizadas.

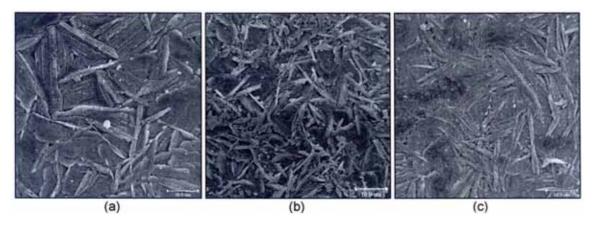


Fig. 7 – Micrografia do aço-carbono fosfatizado para os tempos de imersão: a) 85 s; b) 45 s; c) 30 s. Imagens geradas através de elétrons secundários.

REFERÊNCIAS

- W. RAUSCH (The Phosphating of Metals) Finishing Publications Ltd., London, U.K. (1990).
- [2] T. BIESTEK and J. WEBER (Conversion Coatings) Portcullis Publishing, 1.^a edição, Redhill, U.K., cap. 3, p. 128-130 (1976).
- [3] T. S. N. SANKARA NARAYANAN, Rev. Adv. Mater. Sci., 9, 130 (2005).
- [4] R. W. ZURILLA and V. HOSPADARUK, SAE Technical Paper Series n.º 780187, 762 (1978).
- [5] K. KISS and M. COLL-PALAGOS, Corrosion, 43, 1, 8 (1987).
- [6] A. LOSCH and J. W. SCHULTZE, Appl. Surf. Sci., 52, 29 (1991).
- [7] A. LOSCH and J. W. SCHULTZE, J. Electroanal. Chem., 359, 39 (1993).
- [8] U. B. NAIR and M. SUBBAIYAN, *Trans. Inst. Metal Finish.*, 71, 2, 68 (1993).
- [9] H. A. PONTE, A. M. MAUL and E. A. ALVARENGA, *Mat. Res*, 5, 4, 439 (2002).

- [10] U. RAMMELT and G. REINHARD, *Electrochim. Acta*, 40, 4, 505 (1995).
- [11] D. WENG, P. JOKIEL, A. UEBLEIS and H. BOEHNI, Surf. Coat. Tech., 88, 147 (1996).
- [12] J. FLIS, Y. TOBIYAMA, K. MOCHIZUKI and C. SHIGA, *Corros. Sci.*, 39, 10-11, 1757 (1997).
- [13] G. LENDVAY-GYÖRIK, G. MÉSZÁROS and B. LENGYEL, J. Appl. Electrochem., 32, 891 (2002).
- [14] J. FLIS, Y. TOBIYAMA, C. SHIGA and K. MOCHIZUKI, J. Appl. Electrochem., 32, 401 (2002).
- [15] G. BUSTAMENTE, F. J. FABRI-MIRANDA, I. C. P. MARGARIT and O. R. MATTOS, *Prog. Org. Coat.*, 46, 84 (2003).
- [16] A. C. BASTOS, A. M. P. SIMÕES e M. G. S. FERREIRA, *Corros. Prot. Mater.*, 22, 3, 6 (2003).
- [17] A. C. BASTOS, C. OSTWALD, L. ENGL, G. GRUND-MEIER and A. M. P. SIMÕES, *Electrochim. Acta*, 49, 3947 (2004).
- [18] L. KWIATKOWSKI, Surf. Eng., 20, 4, 292 (2004).