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ABSTRACT – Delimitation of areas subject to flooding is crucial to understand water 
dynamics and fluvial changes. This study analyzed the potential of C-band Synthetic Aper
ture Radar (SAR) images acquired by the Sentinel-1 satellite in 2017, 2018, and 2019 to 
delineate flooded areas in the Central Amazon. The images were processed by the Artificial 
Neural Network MultiLayer Perceptron (ANN-MLP) and two KNearest Neighbor (KNN-7 
and KNN-11) machine learning (ML) classifiers. Pre-processing of Single Look Complex 
(SLC) SAR images involved the following methodological steps: orbitfile application; radio-
metric calibration (σ0); RangeDoppler terrain correction; speckle noise filtering; and con-
version of linear data to backscattering coefficients (units in dB). We applied the Lee filter, 
with a window size of 3x3, for speckle filtering. A set of 6000 randomly distributed samples 
for training (70%), validation (20%), and test (10%) was obtained based on visual interpre-
tation of Sentinel-2 optical satellite image acquired in the same years of SAR images. We 
found the largest flooded areas in 2019 in the study area (municipality of Parintins and 
Urucará, Amazonas River, Brazil): 6244km2 by the ANN-MLP classifier; 6268km2 by KNN-
7; and 6290km2 by KNN-11, while the smallest flooded areas were found in 2018: 5364km2 
by ANN-MLP; 5412km2 by KNN-7; and 5535km2 by KNN-11. The three classifiers presen-
ted Kappa coefficients between 0.77 and 0.91. ANN-MLP showed the best accuracy. The 
presence of shadow effects in the SAR images increased the commission errors.
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RESUMO – DELIMITAÇÃO DE ÁREAS INUNDADAS COM BASE EM DADOS 
SAR SENTINEL-1 PROCESSADOS ATRAVÉS DE APRENDIZAGEM DE MÁQUINA: 
UM ESTUDO DE CASO NA AMAZÓNIA CENTRAL, BRASIL. A delimitação de áreas 
sujeitas a inundações é crucial para entender a dinâmica hídrica e as mudanças fluviais. Este 
estudo analisou o potencial de imagens de radar de abertura sintética (SAR) adquiridas na 
banda-C pelo satélite Sentinel-1 em 2017, 2018 e 2019 para delinear áreas inundadas na 
Amazónia Central. As imagens foram processadas pela Rede Neural Artificial MultiLayer 
Perceptron (RNA-MLP) e dois classificadores de aprendizagem de máquina (ML) KNearest 
Neighbor (KNN-7 e KNN-11). O pré-processamento de imagens SAR Single Look Complex 
(SLC) envolveu as seguintes etapas metodológicas: aplicação do orbitfile; calibração radio-
métrica (σ0); correção de terreno RangeDoppler; filtragem de ruído speckle; e conversão de 
dados lineares para coeficientes de retroespalhamento (unidades em dB). O filtro de Lee 
com tamanho de janela de 3×3 foi aplicado para filtragem do ruído speckle. Um conjunto de 
6000 amostras distribuídas aleatoriamente para treino (70%), validação (20%) e teste (10%) 
foi obtido com base na interpretação visual da imagem do satélite óptico Sentinel-2 adqui-
ridas no mesmo ano das imagens de radar. As maiores áreas alagadas foram encontradas em 
2019 na área de estudo (municípios de Parintins e Urucará, Rio Amazonas, Brasil): 6244km2 
pelo classificador RNA-MLP; 6268km2 pelo KNN-7; e 6290km2 pelo KNN-11, enquanto as 
menores áreas alagadas foram encontradas em 2018: 5364km2 pelo classificador RNA-MLP; 
5412km2 pelo KNN-7; e 5535km2 pelo KNN-11. Os três classificadores apresentaram coefi-
cientes Kappa entre 0,77 e 0,91. A RNA-MLP apresentou a melhor precisão. A presença de 
efeitos de sombra nas imagens SAR aumentou os erros de comissão.

Palavras-chave: Deteção remota; recursos hídricos; classificadores de imagens; 
inundação.

RÉSUMÉ – DÉLIMITATION DES ZONES INONDÉES SUR LA BASE DES DON-
NÉES SAR SENTINEL-1 TRAITÉES PAR L’APPRENTISSAGE AUTOMATIQUE: UNE 
ÉTUDE DE CAS EN AMAZONIE CENTRALE, AU BRÉSIL. La délimitation de zones 
sujettes aux inondations est cruciale pour comprendre la dynamique hydrique et les change-
ments fluviaux. Cette étude a analysé le potentiel des images radar à ouverture de synthé-
tique (SAR) acquises en bande-C par le satellite Sentinel-1 en 2017, 2018 et 2019 pour déli-
miter les zones inondées en Amazonie Centrale. Les images ont été traitées par le Réseau de 
Neurones Artificiels Multicouches Perceptron (ARN-MLP) et deux classificateurs d’apprentis-
sage automatique (ML) KNearest Neighbor (KNN-7 et KNN-11). Le prétraitement des 
images SAR images complexes à visée simple (SLC) a impliqué les étapes méthodologiques 
suivantes : application du fichier d’orbite; calibration radiométrique (σ0); correction de ter-
rain RangeDoppler; filtrage du bruit de chatoiement; et conversion des données linéaires en 
coefficients de rétrodiffusion (unités en dB). Un filtre de Lee avec une taille de fenêtre de 3×3 
a été appliqué pour filtrer le bruit de chatoiement. Un ensemble de 6000 échantillons assi-
gnés au hasard pour la formation (70%), la validation (20%) et les tests (10%) a été obtenu à 
partir de l’interprétation visuelle de l’image satellite optique Sentinel-2 acquise pour la 
même année que les images radar. Les plus grandes zones inondées ont été trouvées en 2019 
dans la zone d’étude (municipalité de Parintins et Urucará, la Riviére Amazonas, Brésil) : 
6244km2 selon le classificateur RNA-MLP; 6268km2 pour KNN-7; et 6290km2 pour KNN-
11, alors que les plus petites zones inondées ont été trouvées en 2018: 5364km2 pour le 
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classificateur RNA-MLP; 5412km2 pour KNN-7; et 5535km2 pour KNN-11. Les trois classi-
fieurs présentaient des coefficients Kappa compris entre 0,77 et 0,91. L’ARN-MLP a montré 
une meilleure précision. La présence d’effets d’ombre dans les images SAR a augmenté les 
erreurs de commission.

Mots clés: Télédétection; ressources en eau; classificateurs d’images; inondation.

RESUMEN – DELIMITACIÓN DE ÁREAS INUNDADAS BASADA EN DATOS SAR 
SENTINEL-1 PROCESADOS MEDIANTE APRENDIZAJE AUTOMÁTICO: UN ESTU-
DIO DE CASO DE AMAZONÍA CENTRAL, BRASIL. La delimitación de áreas sujetas a 
inundaciones es crucial para comprender la dinámica del agua y los cambios fluviales. Este 
estudio analizó el potencial de las imágenes de radar de apertura sintética (SAR) adquiridas 
en la banda-C por el satélite Sentinel-1 en 2017, 2018 y 2019 para delinear áreas inundadas 
en la Amazonía Central. Las imágenes fueron procesadas por la Red Neuronal Artificial de 
Perceptrón Multicapa (RNA-MLP) y dos clasificadores de aprendizaje automático (ML) 
KNearest Neighbor (KNN-7 y KNN-11). El preprocesamiento de imágenes SAR complejas 
de una sola mirada (SLC) involucró los siguientes pasos metodológicos: aplicación del 
archivo de órbita; calibración radiométrica (σ0); corrección del terreno RangeDoppler; fil-
trado de ruido moteado; y conversión de datos lineales en coeficientes de retrodispersión 
(unidades en dB). Se aplicó El filtro Lee con un tamaño de ventana de 3×3 para filtrar el 
ruido moteado. Se obtuvo un conjunto de 6000 muestras asignadas aleatoriamente para 
entrenamiento (70%), validación (20%) y prueba (10%) en base a la interpretación visual de 
la imagen del satélite óptico Sentinel-2 adquirida el mismo año que las imágenes de radar. 
Los humedales más grandes se encontraron en 2019 en el área de estudio (municipio de 
Parintins y Urucará, Rió Amazonas, Brasil): 6244km2 por el clasificador RNA-MLP; 6268km2 
por KNN-7; y, 6290km2 por KNN-11, mientras que, los humedales más pequeños se encon-
traron en 2018: 5364km2 por el clasificador RNA-MLP; 5412km2 por KNN-7; y 5535km2 por 
KNN-11. Los tres clasificadores presentaron coeficientes Kappa entre 0,77 y 0,91. RNA-
-MLP mostró la mejor precisión. La presencia de efectos de sombra en las imágenes SAR 
aumentó los errores de comisión.

Palabras clave: Sensores remotos; recursos hídricos; clasificadores de imágenes; 
inundación.

I. INTRODUCTION

In the Brazilian Amazon region, rivers and their tributaries contain an extensive 
floodplain that corresponds to approximately 12% of the humid area of the Amazon 
basin. These floodplains present enormous terrestrial and aquatic biodiversity (Melack & 
Hess, 2010). Accurate flood monitoring not only in the Brazilian Amazon but also other 
regions of the world is important for increasing the security of local inhabitants and for 
reducing infrastructure damages and income losses. Besides, the frequency and magni-
tude of flood events are expected to increase due to climate change.

Flood monitoring can be conducted based on satellite observations, because of their 
ability to cover large areas, at high repetition and low costs. Inundation detection has 



90

been addressed based on several optical satellites (e.g., Landsat, Sentinel-2, and Moderate 
Resolution Imaging Spectroradiometer onboard Terra and Aqua platforms) operating 
at different spatial, spectral, and temporal resolutions. They exploit the high level of 
absorption of radiation incident into the water bodies in the near-infrared and shortwave 
infrared spectra relative to the visible spectrum. However, the Amazon tropical region 
faces persistent cloud cover conditions most of the year, making the use of optical remote 
sensing data limited.

Synthetic Aperture Radar (SAR) remote sensing can be an important source of infor-
mation for mapping flooded areas in the Brazilian Amazon because of its ability to 
acquire images under cloud-covered conditions. SAR sensors can identify inundation 
because of the typically lower backscattering returns from water bodies relative to other 
features. Basically, flooded areas in single SAR images are discriminated from non-
flooded areas by thresholding backscatter values at different polarizations (Matgen et al., 
2011), subtracting backscattering coefficients between two images (Schlaffer et al., 2015), 
or calculating variance in time series (DeVries et al., 2020).

More recently, machine learning (ML) and deep learning (DL) classifiers are becom-
ing quite popular in the field of remote sensing image classification. Although there is an 
overall agreement that DL is more powerful than ML, it requires bigger computational 
capabilities and so it may not be operational for studies involving large areas such as the 
Brazilian Amazon. ML-based image classification can be divided into supervised, unsu-
pervised, and reinforcement learning categories. The two most used supervised ML clas-
sifiers are the Random Forest (RF) and Support Vector Machine (SVM) because they usu-
ally provide high accuracies in different types of land use and land cover classifications, 
including flooded and non-flooded classes (Banks et al., 2019; Millard & Richardson, 
2013; Mohammadimanesh et al., 2018). The other popular supervised algorithms include 
naive Bayes and neural networks (Acharya et al., 2019; Boateng et al., 2020; Nemni et al., 
2020). Several authors have reported that divergences in the classification results can be 
substantial due to the differences in sensor systems, timing, and data processing algo-
rithms (e.g., Aires et al., 2013; Pham-Duc et al., 2017; Rosenqvist et al., 2020).

This study aims to evaluate the potential of the Artificial Neural Network MultiLayer 
Perceptron (ANN-MLP) and two kNearest Neighbor (KNNs) algorithms to delineate 
flooded areas in a stretch of the Amazonas River in Central Amazon using Sentinel-1 
SAR time series from 2017, 2018, and 2019. To our best knowledge, there is no study 
evaluating these ML classifiers to identify flooded areas in the Brazilian Amazon, espe-
cially using Sentinel-1 SAR data sets. Among the 29 studies listed recently by Fleischmann 
et al. (2022) involving inundation mapping by remote sensing over the Brazilian Ama-
zon, nine relied on SAR data, all acquired by the ALOS/PALSAR mission. Currently, the 
only SAR data freely available on the internet are the ones acquired by the European 
Space Agency (ESA) Sentinel-1 satellite (Torres et al., 2012). We addressed the following 
research question in this study: what are the performances of the ANN-MLP and KNN-
based ML algorithms to map flooded areas in tropical rainforests based on Sentinel-1 
satellite data?
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II. MATERIALS AND METHODS

1. Study area

The study area is located between the municipalities of Urucará and Parintins in the 
Amazonas State, Brazil, comprising part of the Amazonas River. It is located between the 
following coordinates: 22º30'48.84² and 22º37'59.16² of south latitude; and 44º31'35.68² 
and 44º43'25.94² of west longitude (fig. 1). The typical climate is classified as Af, that is, 
tropical rainforest climate without dry season, in the Köppen classification system, with 
average annual precipitation ranging from 1355mm to 2839mm (Alvares et al., 2014). 
The average annual temperature varies from 25.6°C to 27.6°C. The flooding period occurs 
mostly between May and July.

Fig. 1 – Location of the study area in the Central Amazon. The image at right acquired in 2019 by the 
Sentinel-1 SAR, at the VV polarization. Colour figure available online.

Fig. 1 – Localização da área de estudo na Amazónia Central. A imagem à direita foi captada em 2019 
pelo satélite Sentinel1 SAR, na polarização VV. Figura a cores disponível online.

2. Remote sensing data sets

This research used three Sentinel-1 SAR images acquired in the VV and VH polariza-
tions during the following flooding periods: 23 June 2017; 18 June 2018; and 7 July 2019. 
The images were obtained in descending, Interferometric Wide (IW) mode, and processed 
at Level-1, which includes pre-processing and data calibration (table I).
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Table I – Sentinel-1 SAR image acquisition modes.
Quadro I – Modos de aquisição das imagens Sentinel1 SAR.

Mode* Incident
Angle (º)

Spatial
Resolution

Swath Width
(km) Polarization

SM 20° – 45° 5m×5m  80 HH or VV or (HH and HV) or (VV and VH)
IW 29° – 46° 5m×20m 250 HH or VV or (HH and HV) or (VV and VH)
EW 19° – 47° 20m×40m 400 HH or VV or (HH and HV) or (VV and VH)

WV 22° – 35°
35° – 38° 5m×5m  20 HH or VV

* SM = StripMap; IW = Interferometric Wide; EW = Extra Wide; and WV = Wave.
Source: ESA (2017)

We also selected Sentinel-2 MultiSpectral Instrument (MSI) images acquired near the 
Sentinel1 SAR overpasses (2 July 2017; 22 June 2018; and 29 July 2019). In this study, the 
Sentinel2 was used to collect sampling data for training, validation, and testing. The Sen-
tinel-2 MSI images were radiometrically corrected. They have the potential for mapping 
flooded areas at regional scales, as they are acquired under the spatial resolutions of 10m 
to 60m and temporal resolution of 10-days (Du et al., 2018) (table II).

Table II – Sentinel-2 MSI image acquisition modes.
Quadro II – Modos de aquisição dos dados da imagem Sentinel2 MSI.

Spatial Resolution (m) Band Spectral Bands Wavelength (nm)

10

B2 Blue 490
B3 Green 560
B4 Red 665
B8 Near Infrared 842

Source: ESA (2017)

3. Methodological approach

Figure 2 shows the main steps of the methodological approach used in this study. We 
conducted the following pre-processing steps: correction by the orbit file; terrain correc-
tion; radiometric calibration; conversion of the data to decibels; and spatial filtering. The 
images were pre-processed by the image orbit file, containing accurate information on 
the satellite´s position, trajectory and speed during the image capture process (ESA, 
2017). The terrain correction was based on the digital elevation model (DEM) acquired 
by the Shuttle Radar Topographic Mission (SRTM) at ~3 arc sec-1. The radiometric cali-
bration was performed using the Sigma Look-Up Table (LUT) file to generate images 
converted into backscattering coefficients (σ0).

SAR images present speckles that originate from destructive or additive interference 
from the radar return signal for each pixel (Lee & Pottier, 2009). We used Lee filter with 
a 3×3 window size for processing VV- and VH-polarized images. The Lee filter trans-
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forms the multiplicative model into an additive model by expanding the first-order Tay
lor series around the average. This technique uses local statistics to minimize the mean 
square error (MSE) through the Wiener filter. In this way, the Lee filter is an adaptive filter 
that has the characteristics of preserving edges (Sant’Anna, 1995). Lee’s filter assumes that 
the mean and variance of the pixel of interest are equal to the mean and variance of all 
local pixels, which refer to the inside of the adopted window.

Fig. 2 – Methodological flowchart with the main steps for classifying flooding areas in the Central 
Amazon in 2017, 2018, and 2019.

Fig. 2 – Fluxograma metodológico com as principais etapas para classificação de áreas inundáveis na 
Amazónia Central em 2017, 2018 e 2019.

We used the following image processing software: S1Toolbox available in the Sentinel 
Application Platform (SNAP) version 7.0.0; ArcGIS version 10.5; and Abilius, which uses 
the OpenCV library of artificial intelligence algorithms in the C++ programming lan-
guage.

Sentinel-1 images converted into backscattering coefficients were normalized based 
on their averages and standard deviations (eq. 1 and 2).

  (Eq. 1)

  (Eq. 2)
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The normalized images were also processed to generate the simple ratio (SR) index 
and normalized difference (ND) index involving VH and VV polarizations (Hird et al., 
2017; Tsyganskaya et al., 2018) (eq. 3 and 4).

  (Eq. 3)

  (Eq. 4)

As pointed out by Boateng et al. (2020), the most widely used nonparametric ML tech-
niques include ensembles of classification trees such as Random Forest (RF) (Breiman, 
2001), Artificial Neural Networks (ANNs) (Brown et al., 2000), KNearestNeighbors (KNN) 
(Breiman & Ihaka, 1984), Support Vector Machines (SVMs) (Cortes & Vapnik, 1995). In this 
study, we selected two classifiers, the ANN and two KNN (KNN-7 and KNN-11) algori-
thms to verify the performance of these techniques to classify flooded areas in the region of 
interest. The widely used RF classifier was not selected because we are interested in only two 
classes (water and non-water), making it impossible to develop a random forest, ensemble 
architecture that is the basis of these algorithms. In this ensemble architecture, several 
classification trees are trained based on subsets of the training data (Abdi, 2020). We did not 
evaluate SVM either because, together with RF, it has been intensively assessed in literature 
over several different environmental and terrain conditions.

The ANN adopted in this study was the Multilayer Perceptron (MLP) type with the 
backpropagation learning algorithm with insertion of the momentum term, which 
optimizes the network processing with a learning rate of 0.05 and a momentum factor 
of 0.5. According to Atkinson and Tatnall (1997), there are several advantages of neural 
networks, such as the efficient manipulation of large data sets and their use in the classi-
fication of remote sensing data without assuming a normal distribution. In the classifica-
tion by neural networks, we used the Abilius program developed by the University of 
Brasília, Brazil, which is based on the OpenCV library. We used the logistical activation 
function in which the output result of the neuron, given a set of input signals, assumes 
real values between zero and one to facilitate the network training process and to simplify 
its structure (eq. 5):

  (Eq. 5)

where β = real constant associated with a slope level of the logistic function related to its 
inflection point; and µ = activation potential produced by the difference in value pro-
duced between the linear combination and activation threshold.

The KNN classifier is a non-parametric method based on k-training samples closest 
to the behavior of the analyzed data (Cover & Hart, 1967). The calculation of the nearest 
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neighbor was performed using the Euclidean distance method. In this classification tech-
nique, the k-value refers to the number of neighbors to be used in determining the class 
assigned by the values of most of the nearest pixels that must be assigned. There are sev-
eral studies in the literature with different values of k (Alves et al., 2013). The unknown 
sample is assigned to the most common class of the k-training samples that are nearest in 
the feature space to the unknown sample (Maxwell et al., 2018). In this study, we assigned 
k-values of seven and eleven. These numbers are a compromise between too-low and too-
high k-values. Low k-values will produce complex decision boundaries while high k-values 
will result in greater generalization (Maxwell et al., 2018).

The training, validation, and testing data set was produced by manual sample collec-
tion of 6000 pixels (denoized time signatures) containing two classes (water and non-wa-
ter), with equal distribution (3000 samples per class), showing well-distributed sampling 
design (fig. 3). We considered a total of 4200-pixel samples for training (70%), 1200-pixel 
samples for validation (20%) and 600-pixel samples for testing (10%), according to the 
methodology defined by Kuhn and Johnson (2013) and Larose and Larose (2014). The 
training of ANNs considered different architectures for VV, VH, SR, and ND images. The 
number of neurons in the hidden layer was determined by the trial and error methods 
(Hirose et al., 1991). The selected stopping criterion was the number of learning cycles, 
defined as 10 000. At the end of the training process, 180 sets of independent samples 
were collected to validate the classification results. The selection of the best classifier was 
based on the lowest values of mean squared error (MSE).

The accuracy of the classification was analyzed using the confusion matrix, omission 
and commission errors, overall accuracy, and Kappa index (Congalton & Green, 1993). 
Overall accuracy (OA) and the Kappa index were calculated using equations 6 and 7:

  (Eq. 6)

where nii = diagonal elements of the confusion matrix; n = total number of observations; 
and m = number of themes mapped.

  (Eq. 7)

where n = total number of observations; and xi and x+i are the sums in row and column.

Kappa is a coefficient that varies from zero to one, representing a general agreement 
index. Kappa values are associated with the quality of the classification. Cell values were 
considered for measuring omission and commission errors. The marginal cells in the 
lines indicate the number of pixels that were not included in a particular category, that is, 
express the error known by default. Cells on the diagonals represent the pixels that were 
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not included in no category, expressing the error of commission (Congalton & Green, 
1993). The omission error (OEi) and the commission error (CEj) were calculated for the 
thematic classes of the classification (eq. 8 and 9):

  (Eq. 8)

  (Eq. 9)

where ΣXij – Xii = sum of waste per line; ΣXii – Xjj = sum of waste per column; and ΣXjj = row 
or column marginal.

Fig. 3 – Location of the samples for training (green circle), validation (brown square), and test  
(yellow triangle). Colour figure available online.

Fig. 3 – Localização das amostras para treino (verde), validação (marron) e teste (amarelo).  
Figura a cores disponível online.

We also conducted another validation strategy based on the Sentinel-2 MSI scenes 
from June and July of 2019 and the McNemar chi-squared test (c2). The accuracy analysis 
used 88 systematic samplings with a 10km diameter in regular grids of 17×17km2 (fig. 4). 
We disregarded the cloud-covered samples in the Sentinel-2 images.

Magalhães, I. A. L., de Carvalho Junior, O. A., Sano, E. E. Finisterra, LVIII(123), 2023, pp. 87-109



97

Fig. 4 – Location of systematic samples for validation of flooding maps produced by the machine 
learning classifiers. Colour figure available online.

Fig. 4 – Localização das amostras sistemáticas para validação dos mapas de inundação produzidos pelos 
classificadores de aprendizagem de máquina. Figura a cores disponível online.

McNemar’s c2 test was used considering a statistical level of significance of 0.05 and 
one degree of freedom to analyze the differences in measured areas between visual inter-
pretation and classified images. According to McNemar (1947) and Leeuw et al. (2006), 
McNemar’s analysis is a non-parametric statistical test to analyze pairs and has been 
widely used in remote detection because it can use the same validation set (Eq. 10):

  (Eq. 10)

where f12 = number of wrong classifications by Method1, but correctly classified by 
Method2; and f21 = number of correct classifications correct by Method1, but incorrectly 
classified by Method2.

This precision comparison based on related samples is quite popular in the literature 
(Abdi et al., 2020; Manandhar et al., 2009; Mayer et al., 2021; Wang et al., 2018). The 
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McNemar statistical test was performed at the level of significance of 0.05 and one degree 
of freedom between the image classifiers to analyze whether the classified images differ 
statistically.

III. RESULTS

1. Backscattering values of flooded areas

Table III presents the statistical results for the backscatter coefficients of the three-
-year images in dual polarization from the Sentinel-1 SAR satellite before and after the 
data normalization. The results of the normalization showed a slight increase in the mean 
values compared to the non-normalized images. The value of variance and standard 
deviation remained identical with the image before adjustment. Decreasing mean values 
in the fitted images represents a greater concentration of the distribution data, compres-
sing the backscatter values for the image. In other words, the decrease in the mean and 
standard deviation values indicates a low dispersion of the backscattered data. The cha-
racteristics and multi-temporal patterns of the backscatter values were similar to the VH 
and VV polarizations, as well as to the SR and ND images for the three years.

Table III – Statistical results before and after normalization of Sentinel-1 SAR images from 2017 to 2019.
Quadro III – Resultados estatísticos antes e após a normalização das imagens Sentinel1 SAR de 2017 a 2019.

Overpass Normalization Mean 
VH

Mean 
VV

Standard 
Deviation VH

Standard 
Deviation VV

Variance 
VH

Variance 
VV

23 June 2017 Non-normalized -10.68 -7.08 8.77 7.14 76.91 50.97

Normalized -9.46 -6.09 8.77 7.14 76.91 50.97

12 July 2018 Non-normalized -9.96 -6.29 7.69 5.76 59.13 33.17

Normalized -8.67 -5.20 7.69 5.76 59.13 33.17

17 June 2019 Non-normalized -10.50 -6.63 7.86 5.93 61.77 35.16

Normalized -9.16 -5.52 7.86 5.93 61.77 35.16

Figure 5 shows the box plot in a range of grouped multi-temporal backscatter values, 
measured in all scenes (VH, VV, SR, and ND). In comparison to the backscatter values of 
water bodies in the time series, there was a considerable increase in the average backscat-
ter values in the following order: VH, VV, SR, and ND. The backscatter of water bodies in 
the VH image was the lowest among the three scenes, with an average value of -25.8dB in 
the upper limit and -20.0dB in the lower limit and with backscattering in the value of 
-24.2dB in the first quartile. In contrast, the VV polarization presented the largest data 
series between the lower and upper limits, with the upper limit lower value at -23.3dB 
and the upper limit at -13.3dB, with 75% of its backscatter values being represented by 
-15.8dB, as shown in quartile-3.
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Fig. 5 – VH, VV, SR and ND backscatter values over water bodies obtained by averaging the Sentinel-1 
scenes from 2017, 2018, and 2019. Colour figure available online.

Fig. 5 – Valores médios de coeficientes de retroespalhamento para corpos de água nas polarizações VH, VV, 
SR e ND relativos aos compósitos adquiridos em 2017, 2018 e 2019. Figura a cores disponível online.

The VH polarization showed the lowest backscatter values for the water body due to 
the record of the backscattered value of the return signal on the antenna occurring in the 
horizontal direction. The backscatter values of the indices became more aggregated com-
pared to the scalar values of the polarizations VH and VV, with median, quartiles, and 
closest limits for the index images.

2. Best ANN model for flooded area detection

The ANN model with the combination of VV and VH polarizations as well as SR and 
ND presented accurate results in the network learning and training tests, with: 91.3% and 
91.9% of overall accuracies for the image acquired in 2017; 90.7% and 90.9% accuracies 
for 2018; and 90.2% and 90.7% accuracies for 2019. The ANN architecture with the best 
results was obtained using four neurons in the input layer, two hidden inner layers with 
eight neurons, and two neurons in the output layer (4-8-8-2 model) (fig. 6).

In the learning phase of the three ANNs, the training errors were slightly higher 
than the test errors. However, with the increasing number of trainings in some 
moments, these errors were equalized. The errors stabilized with values of root mean 
square error (RMSE) in 0.2. The maximum cycles did not exceed 10  000 iterations. 
These values demonstrate that the maximum learning limit of ANN with 10 000 itera-
tions is sufficient for training, which results in high precision, accuracy, and lower 
computational processing cost (fig. 7).
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Fig. 6 – The most appropriate artificial neural network model for classifying water bodies  
in the study area (4-8-8-2). Colour figure available online.

Fig. 6 – Arquitetura da rede neural artificial mais apropriada para classificar corpos d’água  
na área de estudo (4882). Figura a cores disponível online.

Fig. 7 – Mean square error (MSE) values in relation to on the number of iterations in the training  
of Artificial Neural Networks (ANN) for scenes acquired in 2017 (a), 2018 (b), and 2019 (c).  

Colour figure available online.
Fig. 7 – Valores do erro quadrático médio (MSE) em relação ao número de iterações no treino  

de Redes Neurais Artificiais (ANN) para os compósitos adquiridos em 2017 (a), 2018 (b) e 2019 (c).  
Figura a cores disponível online.

3. Classification results

Figure 8 shows the classification of the flooded areas in the Central Amazon region 
using the ANN, KNN-7, and KNN-11 classifiers in the period of largest flood pulse 
during the years 2017, 2018, and 2019. The blue-colored areas correspond to areas classi-
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fied as water bodies. The classifiers delimited precisely the main channel of the Amazon 
River, as well as the flooded areas adjacent to the river channel. In general, the classifica-
tion through ANN generated products classified with slightly higher clarity when com-
pared to the KNN classifiers.

The noises classified as upper lands increased from KNN-7 to KNN-11, indicating 
that the increase in the Euclidean distance from seven to eleven contributes to the increase 
of confusion between the water body and the upper land. In addition, there was a mis-
classification of water bodies for all images. These areas are shown as random blue dots 
mainly after the boundary of the tributaries of the Amazon River, as well as the presence 
of random pixels scattered in various regions spread in the entire study area.

The largest presence of water bodies was found in the image acquired in 2019, with a 
total area of 6244km² (ANN), 6268km² (KNN-7), and 6290km² (KNN-11). In other 
words, the KNN-7 and KNN11 algorithms presented the largest occurrences of water 
bodies, as compared with the ANN classification.

Fig. 8 – Delineation of flooded areas in the Central Amazon region through the ANN, KNN-7, 
 and KNN-11 classifiers applied in the Sentinel1 images acquired in 2017, 2018, and 2019.  

Colour figure available online.
Fig. 8 – Delimitação de áreas inundadas na região da Amazónia Central através da aplicação dos 
algoritmos ANN, KNN7 e KNN11 nos compósitos Sentinel1 adquiridos em 2017, 2018 e 2019.  

Figura a cores disponível online.
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4. Accuracy analysis

The image classification by ML showed Kappa coefficient values from 0.77 to 0.91 
(table IV). ANN showed higher accuracy for all Sentinel-1 scenes. Second in the classifi-
cation order, the KNN7 presented results close to the ANN. The KNN-11, on the other 
hand, presented the highest differences in the accuracies among the three classifiers, 
obtaining the lowest Kappa index (0.77) in the image acquired in 2018.

There was no discrepancy between Kappa indexes and the overall accuracies. The 
classifications by ML showed high overall accuracy values, with ANN presenting the 
highest values, with 97% in the image from 2019. The lowest value was presented by 
KNN-11, with 92%, in the image acquired in 2018.

Table IV – Kappa coefficient, overall accuracy, and omission and commission errors  
in the SAR images processed by the ANN, KNN-7, and KNN-11 classifiers.
Quadro IV – Coeficiente Kappa, precisão geral, erros de omissão e comissão  

nas imagens SAR obtidas pelos classificadores ANN, KNN7 e KNN11.

Satellite Overpass Kappa Overall Accuracy
(%)

Commission Error
(%)

Omission Error
(%)

ANN
23 June 2017 0.87 96 8.99 2.99
12 July 2018 0.85 93 10.90 3.98
17 June 2019 0.91 97 6.99 1.99

KNN-7
23 June 2017 0.85 95 10.9 4.9
12 July 2018 0.82 95 12.9 5.9
17 June 2019 0.88 96 8.99 3.9

KNN-11
23 June 2017 0.83 94 17.9 8.9
12 July 2018 0.77 92 18.9 12.9
17 June 2019 0.85 95 11.5 5.7

The ANN classification technique obtained the lowest commission error, with 7.0% 
and omission error of 1.9%, in the image from 2019. The largest commission and omis-
sion errors were measured in the image from 2018, classified by KNN-11, with a commis-
sion error of 18.9% and an omission of 12.9%. There was more commission error when 
compared to the omission error in all products generated by the classifiers, proving that 
the biggest classifier errors occurred in the definition of the drylands as the water body.

The image from 2018 was measured with the lowest presence of water bodies, which 
was also the image that presented the largest errors and the worst statistical indices ana-
lyzed. Thus, it is inferred that due to the smaller grouping and the greater distance 
between the pixels corresponding to the backscatter values of the water bodies was the 
determining factor for obtaining the worst results obtained by the KNN classifier with 
Euclidean distance of eleven.
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The classifiers produced an overall good performance in delineating water bodies, 
especially the ANN and the KNN-7. They showed the lowest levels of noise in the images 
(fig. 9). The results of the indexes showed that the ANN obtains the best performance in 
comparison with the other classifiers. ANN and KNN-7 achieved similar levels of precision 
in two of the three images, these images being classified with greater quantities of water 
bodies. On the other hand, it was observed that the worst indices occurred in the KNN-11 
classification and were obtained in the image with the least amount of water bodies.

Sentinel-2 R (4), G (3) and B (2) Sentinel-2 R (4), G (3) and B (2) Sentinel-2 R (4), G (3) and B (2)

Visual analysis: flooded area = 59.6% Visual analysis: flooded area = 55.5% Visual analysis: flooded area = 36.1%

ANN-MLP: flooded area = 57.7% ANN-MLP: flooded area = 54.9% ANN-MLP: flooded area = 33.9%

KNN-7: flooded area = 56.1% KNN-7: flooded area = 51.2% KNN-7: flooded area = 32.7%

KNN-11: flooded area = 53.8% KNN-11: flooded area = 48.8% KNN-11: flooded area = 30.2%

Fig. 9 – Results of visual interpretation (Sentinel-2) and Machine Learning (ML) classification 
(Sentinel-1) of three enlarged images acquired in 2019. Colour figure available online.

Fig. 9 – Resultados da interpretação visual (Sentinel2) e classificação pelo método  
de Machine Learning (ML) (Sentinel1) de três imagens ampliadas que foram adquiridas em 2019. 

Figura a cores disponível online.
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Table V shows the results of the McNemar test between the pairs of the three classifi-
cations, considering the different combinations of parameters. The ANN showed the best 
results in the time series, despite obtaining the best values between the methods. The 
ANN did not differ statistically from the KNN-7 classifier in the time-period. The KNN-11 
classifier presented the highest value of χ² with 4.37, in the image from 2018. This result 
was statistically significant, rejecting the hypothesis of statistical equality between the 
pairs of classifiers RNA × KNN-11 at the p-value of 0.05, since the calculated χ² is higher 
than the tabulated χ² (3.84).

In general, the biggest confusion for image classifiers was to distinguish the water class 
from other non-water targets with similar backscatter values. In this way, the presence of 
the shadow effects was observed in all images, indicating that this effect was the biggest 
cause of misclassification, with less interference only in ANN classification (fig. 10).

Table V – McNemar test between visual interpretation and ANN, KNN-7, and KNN-11 classifiers 
shown in terms of χ² values.

Quadro V – Teste de McNemar entre interpretação visual e classificadores ANN, KNN7 e KNN11, 
apresentados em termos de valores de χ².

Sentinel‑1 
Overpass

Visual × 
ANN

Visual × 
KNN‑7

Visual × 
KNN‑11

ANN × 
KNN‑7

ANN × 
KNN‑11

KNN‑7 × 
KNN‑11

23 June 2017 2.10 2.36 3.63 2.64 2.94 2.86
12 July 2018 2.30 3.61 4.28(*) 2.98 4.37(*) 2.77
17 June 2019 2.68 3.55 4.46(*) 2.12 2.53 2.36

(*) represents statistical significance, with the calculated value of χ² greater than the tabulated value at a significance level of 5% (3.84).

Fig. 10 – Shadow effects in the ANN classification over an enlarged portion of Sentinel-1 image 
acquired in 2019. Colour figure available online.

Fig. 10 – Efeitos de sombreamento de relevo na classificação de imagens SAR pelo algoritmo ANN numa 
porção da imagem adquirida pelo satélite Sentinel1, em 2019. Figura a cores disponível online.

IV. DISCUSSION

The C-band backscattering coefficients of flooded areas in 2017, 2018, and 2019 var-
ied from 10.68dB to 9.96dB in the VH polarization and from -7.08dB to -6.29dB in the 
VV polarization in the study area. These values are quite higher than those found by 

Magalhães, I. A. L., de Carvalho Junior, O. A., Sano, E. E. Finisterra, LVIII(123), 2023, pp. 87-109



105

Magalhães et al. (2022) for open water bodies in the Amazon River: -19dB in the VH 
polarization and -14dB in the VV polarization. Conde and Muñoz (2019) reported that 
backscattering intensity values of permanent water bodies are below -20dB. Moharrami 
et al. (2021) applied a threshold value of -14.9dB to the Sentinel-1 scenes to delineate 
flooded areas. Our higher values are probably due to the contribution of sparse shrubs 
and trees that we find in flooding areas in the surface backscattering process.

The accuracy assessment based on Kappa index, omission and commission errors showed 
overall accuracies of detecting flooded areas close to one another and higher than 90% for 
all three classifiers. These values are comparable to or higher than the accuracies obtained 
by other scientists who used Sentinel-1 SAR data for classifying flooded areas around the 
world. For example, Twele et al. (2016) used a processing chain approach to detect flood 
conditions in two test sites at the border between Greece and Turkey. They showed encour-
aging overall accuracies between 94.0% and 96.1%. Liang and Liu (2020), in their water and 
non-water delineation study using four different thresholding methods, reached overall 
accuracies ranging from 97.9% to 98.9% for a study area located in Louisiana State, USA. 
Siddique et al. (2022) evaluated RF and KNN algorithms applied to Sentinel-1 images from 
North India and concluded that C-band SAR data can detect changes in flood patterns over 
different land cover types with overall accuracies ranging from 80.8% to 89.8%.

The comparison between visual analysis and the selected ML classifiers based on 
three enlarged images (fig. 9) showed an overall underestimation of flooded areas for the 
ML classifiers. However, the NcNemar χ2 test showed that the results from visual interpre-
tation and ML classifiers were statistically equal from each other. The only exceptions 
were found for the KNN-11 applied in the scenes acquired in 2018 and 2019. The McNe
mar test also showed that ANN × KNN-7 and ANN × KNN11 did not differ statistically 
each other. These results indicate the existence of site-specific spatial heterogeneity within 
the study area. In other words, the overall statistical results found for the entire study area 
may differ depending on the local landscape conditions within the study area.

Figure 10 showed the presence of shadowing effects in the flood delineation, leading to 
higher commission errors. This effect has been reported widely in the literature (e.g., Chen 
& Zhao, 2022), even sometimes its presence in SAR images is used as an indicator of some 
targets, mainly deforestation (Bouvet et al., 2018). Shadowing effects occur in SAR images 
because of their mandatory side-looking geometry. In other words, shadows in SAR images 
are related to areas in the terrain that cannot be reached by emitted radar pulses. As Senti-
nel-1 scenes are acquired in an almost north-south orbit (98.2° of inclination), most of the 
pixels classified as flooded in the upper lands are also oriented approximately north-south.

V. CONCLUSION

The Sentinel-1 SAR images classified by ML algorithms showed good potential to 
map flooded areas in the Central Amazon. The three tested algorithms produced accura-
cies ranging from 92% to 97%. ANN and KNN-7 classifiers showed better potential than 
the KNN-11. Shadow effects appearing in non-flooded areas surrounding the flooded 
areas increased the commission errors.
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The methodological approach used in this study may be suitable to map flooding 
areas in other regions of the Brazilian Amazon, but no broader generalizations can be 
made as the performance of the methods varies according to the local environmental and 
biophysical conditions.

As SAR images are quite sensitive to texture, the addition of textural attributes 
derived, for example, from the Gray Level Co-occurrence Matrix (GLCM), such as the 
angular second moment, dissimilarity, entropy, and variance in the classification pro-
cedure may improve the classification results. More recent studies have demonstrated 
the high performance of DL algorithms so they also should be tested to map flooded 
areas. U-Net and tensor flow are the ones that are becoming quite popular in the DL 
group of classifiers.
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