G. Schiitz, F. Pires / Investiga¢ao Operacional, 23 (2003) 71-8/ 71

A genetic based algorithm for the quadratic 0-1
problem

Q. Schiitz * F. M. Pires T

* Escola Superior de Tecnologia, Universidade do Algarve
gschutzQualg.pt

t Faculdade de Ciéncias e Tecnologia, Universidade do Algarve
mpires@ualg.pt

Abstract

In this work we present an algorithm to the unrestricted binary quadratic program. This
approach combines genetic operators with greedy and heuristic procedures. We started
from a genetic based algorithm and replaced the random mutation by a greedy procedure
based on each variable contribution to the objective function. We also introduced in the
genetic population an individual obtained by a heuristic that finds a local star minimum
point. Computational experience with a set of test-problems, known from literature, is
reported and analysed. Our results are quite promising.

Keywords: Quadratic 0-1 programming, Genetic Algorithms, Hybrid Algorithms

1 Introduction

This work presents a genetic based algorithm for the unrestricted binary quadratic program
(QP 0-1):
maz f (z) = 2 Az (1)
z € {0, 1}"
Since binary quadratic problems with an explicit linear component in the objective function
can always be transformed in (1) we adopt this form, without loss of generality. We also

consider A a symmetric matrix as any unsymmetric problem can be easily converted to this
form.

This problem, known to be NP-hard [3 |, is very interesting since it arises in a large
number of applications. Some of the QP 0-1 applications referred in literature deal with

Apdio}b— © 2003 Associa¢ao Portuguesa de Investiga¢ao Operacional

72 G. Schiitz, F. Pires / Investiga¢ao Operacional, 23 (2003) 71-8/

capital budget and financial analysis problems [9 |, CAD problems [7], message traffic
management problems [2 | and machine scheduling problems [1 |. Also some difficult graph
problems (like the maximum clique problem) can be formulated and solved as a quadratic 0-1
programming problem [11 |.

The main purpose of this work is to combine the reasoning of genetic algorithms with greedy
procedures and heuristic approaches in an algorithm for the QP 0-1, and study its behaviour.
We describe our hybrid algorithm, in section 2. We present and analyse the computational
results on a set of test problems known from literature, in section 3. Conclusions and final
remarks are in section 4.

2 Algorithm implementation

In a genetic algorithm it is necessary to generate the individuals of the initial population
accordingly to the codification that will be used. In each iteration selection, crossover and
mutation operators are usually applied.

2.1 Initial population

In the QP 0-1, as it is well known, variables whose partial derivatives have fixed sign in the
unitary hypercube can be fixed either to 0 or 1 according to that sign. Let,

of(x)
afL’i

m; < < M; , for i =1,...,n

where the m; and M; values computed as:

n n
m; = 2Zai_j+aiiandMi = 22@?}—1—@% (2)
=1 j=1
i J#i
with
a;; = maz {0, a;;} and a;; = min {0, ai;},

provide narrow bounds.

So, we have an easy way to fix variables according to:

m; > 0 = 2 = 1; (3)

M; <0 = zf =0, (4)

G. Schiitz, F. Pires / Investiga¢ao Operacional, 23 (2003) 71-8/ 73

Table 1: Sample of a 10 individual population.

Individual 1 2 3 4 5 6 7 8 9 10
fit 1,78, 0,89 1,33 0,22 200 044 000 1,56 1,11 0,67

Table 2: Sample of the Stochastic Universal Sampling selection.
roulette 1,78 2,67 4,00 4,22 6,22 6,66/ 6,66 8,22 9,33/ 10,00
pointers 0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4
selected 1 1 2 3 5 5 6 8 9 10

In order to reduce the problem size, this process of definitively fix some variables is initially
performed.

So instead of representing each individual by a binary array of length n, we used a binary
array of length [, with [equal to the number of the remaining free variables (I < n). For
instance, considering a 10 variables problem we could have:

fixed variables [1 0 0 1 |
variables indices | 2 3 7 9 |

1 4 5 6 8 10 |
individual ¢ [0 0 1 1 1

0]

To obtain the initial population, with dimension Pop, we randomly generate Pop binary
arrays of length [. We denote each individual by 2,7 = 1,..., Pop, and its objective value is

n n n
FE) =D aa + 2> Y ajpala (5)
=1 j=1 k=j+1

The population is sorted in non increasing order by the objective values and the individuals
fitness are assigned according to their ranking, rank (i), in population, as follows:

Lo 2 rank (i)
fit (@) =2 = =5 =7

with 0 < rank (i) < Pop — 1. This way the relative fitness of the best individual will be 2
Pop .

and Y fit (') = Pop.
i=1

, 1 = 1,...,Pop (6)

2.2 Selection and crossover

Individuals are selected by Stochastic Universal Sampling (SUS), which may be seen as the
result of spinning a roulette wheel with slots proportional in width to the fitness of the indi-
viduals in the population, using multiple equally spaced pointers. So we construct the roulette
wheel according to

roulette (0) = 0,
roulette (i) = roulette (i—1) + fit (z*) , i = 1,...,Pop

Next we randomly generate a number in [0, 1] and successively add 1 to form pointers. For
instance, considering a 10 individual population with the fitness values of table 1 we would
obtain the roulette, pointers and select individuals of table 2, supposing that 0.4 was the
number randomly generated in [0, 1].

In order to combine the selected individuals we apply single-point crossover to individuals
pairs. The pairs are randomly formed with different selected individuals.

74 G. Schiitz, F. Pires / Investiga¢ao Operacional, 23 (2003) 71-8/

2.3 Greedy procedure as a mutation operator
Afterwards, a new mutation operator is applied. It consists in a greedy procedure, based on

the increment a variable will bring to the objective function if its value is changed (0 to 1 or
1 to 0). So, for each individual z*, ¢ = 1,..., Pop, this procedure acts as follows:

(i) Compute

n

§; = Z ajkxi; +(Ijj,j:1,...,l
k=1
k#j
(i) Order s; , j = 1,...,1, by its absolute values in a non-increasing way.

Let perm contain the ordered variables indices.

(iii) for k =1 to ! do

if Sperm(ky > 0 A Zp gy = 0
then x;erm(k) = 1 if it improves the objective value
i Sperm@) < 0 A x;erm(k) =1
then x;erm(k) = 0 if it improves the objective value.

For instance, consider the following quadratic form matrix

-1 -1 1 -1
-1 10 1
4 1 01 0
-1 10 0

Applying (2), (3) and (4) to A we fix x3 = 1. Consider, for example, the individual 2! =
[1 0 1], then the correspondent solution is (1, 0, 1, 1) with objective value equal to 0.

Applying mutation operator as defined we obtain:

s = —1, sy = landsy = —1
and
s1 < 0,28 =1land £(0,0,1,1) =1 = 2t = 0
s9 > 0,2, = 0and f(0,1,1,1) = 4 = 2 =1
s < 0,2y = landf (0,1,1,0) = 2 = 4} = 1

So the individual become 2 = [0 1 1] corresponding to (0, 1, 1, 1) solution with f (2*) = 4.

G. Schiitz, F. Pires / Investiga¢ao Operacional, 23 (2003) 71-8/ 75

2.4 A local star minimum point heuristic

In order to introduce some diversification into the population we replace the worst individual
by another obtained with a heuristic method. This is done, only once, after a fixed number
of iterations. We use a heuristic, similar to the one described in Gulati et al (1984), based on
finding a point that is better than all its adjacent points.

This heuristic can be described as follows:

Step 1:
Let
fo=0,F =0, Fy = {1,...n}, u = (u1,...,up)’ = 0
Step 2:
Fori: = 1,...,n

If 2u; + a;; > 0do

fo=fv+1
Fl - {Z}) iEFl
B = . .
F U {Z} , 1€ Fy
FO = {1,,”} - Fl
— |ai + > aij , 1€
Ui = j€EF (8)
JF#i
Zaij , iEFO
\ JEF
{uk—kaik , 1€y
e = —q € F
k?él U Qi 1 1
ke In
{uk—l—aik , € F
Uk = —a i€
k;’él Uk Qi 5 1 0

k € Fy

76 G. Schiitz, F. Pires / Investiga¢ao Operacional, 23 (2003) 71-8/

Step 3:

If fv = 0 then
_ - 1) j S Fl
T such as 7; = { 0. jeR
F@ = > —u

JEM

stop

Else do
fu=20
go to Step 2

is a local star minimum point

Theorem: The heuristic solution is a local star minimum point, that is,

f@ > f@), Vo' = (&1, ..., Tk—1, 1 — Tp, Thga, -

Proof:

This heuristic obtains a solution & = (Z1,...,Tk—1, Tk, Thktls -

ai; < 0, Vi = 1,...,n, so, replacing u; using (8) it follows that:

ai + 2), a; =0, i€F
jeF
JF#i

Qi + QZ(J,Z‘]‘SO , 1€ Fy
JEF

Then

, Tn)

, Tp) such that 2u; +

fz, =1=f@)=f(&) —|awm+2 > a | and by (9) we have

jJEF

Ifzy =0 = f()=f(x)+ <akk +2> akj> and by (10) we have

f@ > f(2)

G. Schiitz, F. Pires / Investiga¢ao Operacional, 23 (2003) 71-8/ 77
2.5 A combined genetic and greedy algorithm

Now, we are able to describe, more formally, our algorithm approach combining genetic oper-
ators with greedy and heuristic procedures. In this algorithm Z represents the best solution,
Maziter contains the number of iterations to perform, o € [0, 1[gives the fraction of Maxiter
iterations to perform before introducing the heuristic individual and [y| represents the smallest
integer greater than y.

Step 1:
Use (2), (3) and (4) to fix variables

Generate Pop x [numbers randomly distributed in [0,1]
obtaining Pop individuals 2!, ..., 2P

iteration = 0
Step 2:
Compute f(z') , 4 = 1,...,n, using (5)
sol = miin f (a:z)
T = a2 f(xl) = sol
Step 3:
Select individuals according to (6) and (7)

Apply single-point crossover to the random formed pairs of selected individuals

New individuals will replace the old ones only if
they produce a better objective function value.

Apply the greedy procedure, described in 2.3, only to the replaced individuals
iteration = iteration + 1
Step 4:
If dteration < Mazxiter
If iteration = [X Maxiter]
Replace the worst individual by the heuristic solution described in 2.4
Go to Step 2
Else

Stop

78 G. Schiitz, F. Pires / Investiga¢ao Operacional, 23 (2003) 71-8/

3 Computational Results

To test our algorithm we made use of a collection of problems retrieved from the Internet
(http://mscmga.ms.ic.ac.uk/jeb/orlib). This collection contains 3 problems sets (“a”, “b” and
“c”) of [10] and 3 sets (“d”, “e” and “f”) of [4]. We summarise in table 3 the characteristics
of these problems, except the “f” set as we were not able to execute it in a PC, due to its
problems sizes (500 variables). In fact, in [4 | the authors refer that they had to solve them
in a VAX Alpha 2100 model 300 computer.

Table 4 presents the results for these problems obtained in a 200 Mhz Pentium MMX PC
with 16 MB RAM. In this table column “sol*” gives the optimal solution (underlined), when
known, or the best-published solution. Actually, the best solutions for these problems were
obtained by the very efficient Tabu Search based algorithms of [4 | and [5 |, as well as the
evolutionary heuristic presented in [8 |.

We also present, in table 4, the local star minimum point heuristic solution obtained to
produce an individual. This individual replaces the worst one after 2/3 of the total number
of iterations. This value of o was chosen in order to produce some diversification. In fact if
this individual is introduced too early, the other individuals will converge to it. We run our
algorithm three times with different population dimensions and number of iterations (Maxiter).
So in table 4 we have 3 “GA (Pop, iterations)” columns. The columns “Time” and “gap”
report, respectively, the total execution times in seconds and

f (x) — sol*

sol*

gap = x 100

The best results obtained are in bold.

3.1 Heuristic results

It is possible to see, in table 4, that the local star minimum point heuristic usually performs
quite well, mainly when considering the execution times, which are always less than 0.5 seconds.
Nevertheless, in problems with many local optimums, as it happens with “b” set, this heuristic
obtains poor results.

3.2 Combined genetic and greedy algorithm results

The results show that this approach is very efficient and consistent, obtaining good quality
solutions and reduced execution time, even with an 80 individuals population and 60 iterations.
The best results were obtained for “a”, “b” and “c” problem sets, as it was expected. In fact,
we knew from [4 | that set problems “a”, “b” and “c” were “easy” and only “c” problems
were more time consuming.

For the “difficult” problem sets “d” and “e” the results were not so good. Nevertheless,
when we failed to obtain the best-known solutions the gap was small except in one case, in
each of these sets, where the gap was around 5%.

We cannot compare our execution times with those reported in [4 |, since different machines

G. Schiitz, F. Pires / Investiga¢ao Operacional, 23 (2003) 71-84

Table 3: Summary of problems characteristics.

Probl. matrix generation n | density elements " diagonal @ total @ ﬁxet(i4 :
off diagonal | diagonal >0 <0 >0 <0 var.
1a 50 | 0,1 58 48 25 25 156 16
2a 60 | 0,1 79 84 31 28 222 18
3a 70 | 0,1 113 | 110 35 34 292 9
4a 100, 100][-100, 100] 80 | 0,1 145 | 159 46 33 383 5
5a 50 | 0,2 119 112 22 28 281 3
6a 30 | 04 91 83 11 19 204 0
7a 30 | 05 107 = 104 13 17 241 0
8a 100 | 0,625 | 149 | 155 53 46 403 52
1b 20 1 187 0 0 20 207 0
2b 30 1 429 0 0 30 459 0
3b 40 1 771 0 0 40 811 1
4b 50 1 1208 0 0 50 | 1258 | 1
5b [0, 100] | [-63, 0] 60 1 1751 0 0 60 | 1811 0
6b 70 1 2388 0 0 70 | 2458 | 0
7b 80 1 3125 0 0 80 | 3205 | O
8b 90 1 3962 0 0 90 | 4052 | 1
9 100 1 4902 0 0 100 | 5002 | 1
10b 125 1 7663 0 0 125 | 7788 | 3
1c 4 | 08 309 | 316 16 24 665 0
2c 50 | 0,6 358 | 405 26 24 813 0
3c 60 | 0,4 334 367 | 34 26 761 0
4c | [-50, 50] [[-100, 100] 70 | 0,3 | 349 = 371 23 46 789 0
5¢c 80 | 02 284 357 | 45 35 721 0
6¢c 9 | 0,1 190 | 210 44 45 489 8
7c 100 | 0,1 247 | 248 49 51 595 | 20
1d 0,1 235 | 258 49 51 593 4
2d 0,2 516 | 500 56 4 | 1116 | 0
3d 0,3 727 | 698 48 52 | 1525 | 0
4d 04 | 1022 @ 978 43 57 | 2100 | ©
5d (50, 50] | 75, 75] | 100 0,5 | 1202 @ 1212 | 58 41 2513 | 0
6d 0,6 | 1478 @ 1470 | 50 50 | 3048 | ©
7d 0,7 | 1697 @ 1737 | 43 55 | 3532 | 0
8d 0.8 | 1956 = 1951 | 50 50 | 4007 | ©
9d 0,9 | 2203 @ 2143 | 46 53 | 4445 0
10d 1 2377 | 2520 | 44 55 | 4996 | 0
1e 0,1 967 | 957 88 112 | 2124 0
2e 0,2 | 1943 1984 | 97 = 103 | 4127 | ©
3e | [-50, 50] [[-100, 100] 200 [0,3 | 2959 | 2891 | 101 97 | 6048 | 0
4e 04 | 3926 3991 | 85 | 115 | 8117 | 0
5e 0,5 | 4883 @ 4974 | 104 = 94 |10055| O

(1) = triangular matrix non zero elements (off diagonal)
(2) =non zero diagonal elements

(3) = triangular matrixnon zero elements

(4) = number of fixed variables

79

G. Schiitz, F. Pires / Investiga¢ao Operacional, 23 (2003) 71-8/

Table 4: Genetic based algorithm results.

Heurisitc GA (40/ 35) GA (60 / 40) GA (80 / 60)

sol*| f(x) ogap| f(x) gap (1) Time| f(x) gap (1) Time| f(x) gap (1) Time
la| 3414] 3381 0,97 3414 0,00 3 1,8 3414 0,000 3 3,0 3404 0,29 1 5,8
2a| 6063| 5790 4,50| 5986 1,27 11 2,9 5989 1,22 4 50| 5989 1,22 5 9,5
3a| 6037 6035 0,03| 6035 0,03 8 3,9| 6035 0,03 18 6,8 6037 0,00 13 12,3
4a| 8598| 7017 18,39| 8598 0,00 12 51| 8530 0,79 8 9,0/ 8598 0,00 20 14,0
5a| 5737| 5712 0,44| 5712 0,44 6 25| 5712 0,44 4 40| 5712 0,44 4 7,7
6a| 3980| 3980 0,00| 3980 0,00 5 1,2 3980 0,00 3 2,0 3980 0,00 5 3,8
7a| 4541| 4541 0,00| 4541 0,00 1 1,2| 4541 0,00 2 20| 4541 0,00 2 4,0
8a| 11109/11109 0,00/ 11109 0,00 24 7,3[11109 0,00 10 12,2[11109 0,00 6 23,6
Average 3,04 0,22 9 3 0,31 7 5 0,24/ 7 10
ib|[133] 85 36,09 133 0,00 1 0,3 133 0,000 1 0,6 133 0,00 1 1,0
2b| 121| 91/24,79] 121 0,00 2 0,6 121 0,00 1 09 121 0,00 1 18
3| 118 102 13,56/ 118 0,00 1 09| 118 0,000 1 1,7/ 118 0,00 1 3,1
4| 129 85 34,11 129 0,00 1 1,4 129 0,00 1 24| 129 000 1 44
50| 150/ 150 0,00 150 0,00 3 20| 150 0,00 1 3,4 150 0,00 1 6,3
6b| 146/ 88 39,73 146 0,00 30 2,6/ 146 0,00 26 55 146 0,00 24 8,9
70| 160 160 0,00 160 000 1 3,6 160 0,00 1 58 160 0,00 1 10,6
8b| 145 101 30,34| 145 0,00 35 4,3 145 0,00 15 6,8 145 0,00 13 12,8
9| 137| 75 4526 137 0,00 3 4,9/ 137 0,00 3 81| 137 0,00 3 14,5
10| 154| 90 41,56 154 0,00 2 84| 154 0,00 1 14,0 154 0,00 3 24,8
Average 24,88 0,00 8 3 0,00 5 5 0,000 5 9
ic| 5058 5058 0,00] 5058 0,00 2 2,3] 5058 0,000 4 4,0 5058 0,00 3 7,2
2c | 6213 6213 0,00/ 6213 0,00 6 3,9| 6213 0,00 10 6,3] 6213 0,00 7 11,9
3c| 6665 6649 0,24 6649 0,24 16 4,8| 6649 0,24 9 7,9 6649 0,24 11 14,1
4c | 7398| 7398 0,00/ 7398 0,00 2 6,0/ 7398 0,00 2 10,4| 7398 0,00 2 18,3
5c | 7362| 7336 0,35 7336 0,35 13 0,3| 7342 0,27 35 12,8 7342 0,27 41 22,1
6c | 5824| 5805 0,33| 5805 0,33 6 6,5 5805 0,33 11 11,2| 5805 0,33 12 18,6
7c| 7225| 7147 1,08/ 7211 0,19 6 82| 7211 0,19 10 14,4 7211 0,19 10 24,9
Average 0,29 0,161 7 5 0,15 12/ 10 0,15 12 17
1d | 6333] 6077 4,04] 6241 1,45 10 10,0 6248 1,34 27 15,8| 6248 1,34 23 29,2
2d | 6579| 6240 5,15 6286 4,45 24 10,6/ 6240 515 11 152| 6281 4,53 9 28,1
3d| 9261| 9158 1,11| 9247 0,15 24 13,5 9247 0,15 17 22,9| 9247 0,15 20 44,6
4d | 10727|10684 0,40/ 10684 0,40 18 15,3|10684 0,40 13 252/10684 0,40 16 47,4
5d | 1162611162 3,99 11162 3,99 6 14,7|11390 2,03 18 26,5/11511 0,99 18 48,9
6d | 1420714157 0,35/ 14157 0,35 16 19,7|14157 0,35 23 35214157 0,35 24 65,0
7d | 1447613969 3,50| 13969 3,50 16 20,1/14188 1,99 10 35,6(13969 3,50 11 65,6
8d | 1635216308 0,27| 16352 0,00 25 20,8/16352 0,00 30 37,8/16352 0,00 46 65,6
9d | 1565615557 0,63| 15557 0,63 9 18,3[15557 0,63 9 31,2[15557 0,63 12 56,4
10d| 19102[18391 3,72|18821 1,47 35 251|18772 1,73 30 40,1/18391 3,72 26 73,0
Average 2,32 1,64 18 17 1,38 19 29 156 21 52
1e | 16464[16438 0,16/16464 0,00 29 46[16464 0,00 31 7516464 0,00 42 144
2e | 2339522880 2,20|23127 1,15 28 6923020 1,60 33 117|23127 1,15 51 209
3e | 25243|23930 5,20(23986 4,98 32 73{23939 5,17 39 132|23930 5,20 31 241
4e | 3559435594 0,00|35594 0,00 20 11135594 0,00 20 192|35594 0,00 49 429
5e | 3515434761 1,12|34816 0,96 29 102|34816 0,96 31 206(34816 0,96 26 347
Average 1,74 1,42 28 80 1,55 31 144 1,46 40 274

|

Average 8,09 0,66 13/16,37 0,63/ 13/29,16 0,65 15 54,51

(1) - number of iterations needed to find the solution

G. Schiitz, F. Pires / Investiga¢ao Operacional, 23 (2003) 71-8/ 81

Table 5: Summary of table 4 results.

Probl. GA (40/35) | GA (60/40) | GA (80/60)
gap time gap time gap time

Best 0 1 0 2 0 4

‘@ |Average | 0,22 3| 0,31 5/ 0,24 10
Worst 1,27 71 122 12 1,2 24
Best 0 0 0 1 0 1
"b" | Average 0 3 0 5 0 9
Worst 0 8 0 14 0 25
Best 0 0 0 4 0 7

"C" |Average | 0,16 5 0,15 10| 0,15 17
Worst 035 8 033 14| 033 25
Best 0 10 0 15 0 28
"d" |Average | 1,64 15| 1,38 29| 1,56 52
Worst 4,45 25| 515 40| 453 73
Best 0 46 0 75 0 144

"€ |Average| 1,42 80| 1,55 144| 1,46 274
Worst 498 11| 517 208 52 429

were used. The worst case took around 7 minutes and refers to problem “4e” (200 variables
and 8117 non zero elements).

In some of the problems, inserting an individual corresponding to the heuristic solution
does not affect the results as its insertion is done after obtaining the best solution. But, in the
others, when the best solution is not yet found, it brings some diversification to the population
and the algorithm, generally, improves the heuristic solution.

Analysing columns “(1)” we see that our solution is obtained, generally, in few iterations,
so with a smaller number of iterations the solution quality can be maintained, reducing the
computational execution time.

We summarise in table 5 the results and show in figures 1 and 2 the gap and execution
time averages.

We verify that, in average, the best results were obtained with the smallest popula-
tion/iterations, except for set problem “d” where a population equal to 60 and 40 iterations
obtained the best average results. As, in average, using an 80 individuals population and 60
iterations did not bring any improvement, we conclude that, at least, for these problem sets
it is more appropriate to use populations of 40 or 60 individuals.

Figure 2 shows that the average execution times for sets “a”, “b” and “c” are less than 1

G. Schiitz, F. Pires / Investiga¢io Operacional, 23 (2003) 71-8/

gap
2

Problems
A .
v 1,51 W a
e —=—p
r 14

+ C
a
905 —*—d
° — ——¢
. = =
GA(40/35) GA(60/40) GA(80/60)
Figure 1: Average gap results.
Execution Time
300

Problems
C 250 - a
e 200 - b
; 150 - —A—C
g 100 - d
e 50 - —e—¢

~ GA(40/35) GA(60/40) GA(80/60)

Figure 2: Average execution times in seconds.

G. Schiitz, F. Pires / Investiga¢ao Operacional, 23 (2003) 71-8/ 83

minute. For set “d” the results were not so good but in average they are less than 5 minutes,
which is a quite reasonable execution time for problems of these dimensions.

4 Conclusions

Our combined genetic and greedy approach efficiently found good or optimal solutions to the
QP 0-1. Moreover, the solutions were obtained very quickly even for large problems (200
variables) and large genetic population dimensions.

In this approach we combine genetic ordinary operators, like single point crossover and
stochastic universal sampling selection, with a fast greedy procedure replacing the usual mu-
tation. As in previous computational tests with a similar algorithm with the usual mutation
operator we had achieved worse results (an average gap that was almost 4 times the average
gap obtained now) we can conclude that this greedy procedure contributes, meaningfully, for a
better quality solution and to obtain the best solution earlier. So it also contributes to speedup
the algorithm.

We suppose that the described algorithm approach can be improved using more efficient
heuristic based procedures as genetic operators. The introduction of heuristic individuals, in
the population, a few more times should also improve the results.

5 References

[1] Alidaee, B., G. Kochenberger and A. Ahmadian (1994), “0-1 quadratic programming approach
for the optimal solution of two scheduling problems”, Int. J. Systems Sci., 25, pp. 401-408.

[2] Gallo, G.; P. L. Hammer; B. Simeone (1980), “Quadratic knapsack problems”, Math. Prog., 12,
pp. 132-149.

[3] Garey M. R.; S. Johnson (1979), “Computers and Intractability: A Guide to the Theory of
NP-Completeness”, Freeman, S. Francisco.

[4] Glover, F.: G. A. Kochenberger; B. Alidaee (1998), “Adaptative memory tabu search for binary
quadratic programs”, Manag. Sci., 44, pp. 336-345.

[5] Glover, F.: G. A. Kochenberger; B. Alidaee; M. Amini (1999), “Tabu search with critical event
memory: an enhanced application for binary quadratic programs” in Meta-Heuristics Advances
and Trends in Local Search Paradigms for Optimization, S. Voss, S. Martello, I. H. Osman and
C. Roucairol (eds).

[6] Gulati, V. P., Gupta, S.K., Mittal, A.K. (1984), “Unconstrained quadratic bivalent programming
problem”, European Journal of Operational Research, 15, pp.121-125.

[7] Krarup, J.; P. A. Pruzan (1978), “Computer aided layout design”, Math. Prog. Study, 9, pp.
75-94.

[8] Lodi, A., Allemand, K., Liebling, T.M. (1999), “An evolutionary heuristic for quadratic 0-1
programming”, Furopean Journal of Operational Research, 119, pp. 662-670.

[9] McBride, R. D.; J. S. Yomark (1980), “An implicit enumeration algorithm for quadratic integer
programming”, Manag. Sci., 26, pp. 282-296.

[10] Pardalos, P. , G. Rodgers (1990), “Computational aspects of a branch and bound algorithm for
quadratic 0-1 programming”, Computing, 45, pp. 131-144.

84 G. Schiitz, F. Pires / Investiga¢ao Operacional, 23 (2003) 71-8/

[11] Pardalos, P., G. Rodgers (1992), “A branch and bound algorithm for the maximum clique prob-
lem”, Comp. and Ops. Res., 19, pp. 363-375.

