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Abstract

A method of determining a lower bound for the graph bisection minimization problem
is described. The bound is valid for weigthed graphs with edge and node weights. The
approach is based on Lagrangian relaxation and was previously used for determining an
upper bound on the independence number of a graph. The determination of the lower
bound is done by solving a quadratic programming problem. A characterization of the
solutions of this problem is proved which allows to approximate the optimal solution of the
graph bisection minimization problem. Some computational experiments are reported.
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1 Introduction

The paper deals with the graph bisection minimization problem which is a particular case
of the graph partitioning problem. This problem consists on partitioning the vertices of a
weighted graph into a prescribed number of blocks so as to minimize (or maximize) the weight
of crossing edges. If the required number of blocks is equal to two we obtain the so called
graph bisection problem.

The graph partitioning problem is a well known NP-hard problem that has been successfully
applied to many layout problems such as circuit board design, computer program segmentation
and designing of hardware/software system architectures (see, for example, [5, 16, 20]).

Many heuristic algorithms have been considered for approximately solving the graph parti-
tioning problem. Basically we can distinguish between spectral type methods [7, 8, 16, 25], local
refinement type methods [9, 19], multilevel type methods [13, 18] and other optimization-based
methods [1, 6, 15]. Very recently, following the remarkable paper of Goemans and Williamson
on the max-cut problem [12] (see also [11]), approximation algorithms with performance guar-
antees have been developed for several variants of the graph partitioning problem, namely for
the max bisection and the max k-cut (see [10, 28])
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In [21] an upper bound on the independence number of a graph computable by quadratic
programming was introduced (see also [22]). This bound was deduced by applying the theory
of Lagrangian duality to a quadratic formulation of the independence set problem. This
procedure is now applied to the graph bisection minimization problem which can be precisely
described as follows.

Let G = (V, E) represents a simple undirected graph where V = {1, . . . , n} denotes the
vertex set and E is the edge set. To each edge ij ∈ E a positive edge-weight p = (pij)ij∈E ∈
IRn×n

+ is associated. The weighted adjacency matrix of G, Ap = [aij ] is defined by setting

aij =

{

pij if ij ∈ E
0 if ij /∈ E.

The weighted degree matrix of G is the diagonal matrix Dp = diag (d1, . . . , dn) , where di =
∑n

j=1 pij is the weighted degree of a node i ∈ V (in the sequel we will denote by diag(v)
the diagonal matrix whose diagonal entries are the components of vector v). The matrix
Lp = Dp−Ap is called the weigthed Laplacian matrix of G. Note that Lp satisfies the following
identity for every vector x ∈ IRn :

xT Lpx =
∑

ij∈E

pij (xi − xj)
2 . (1)

To each vertex i ∈ V a positive node-weight, w = (wi)i∈V ∈ IRn
+, is associated. For S ⊆ V,

w(S) denotes the weighted sum of the vertices belonging to S, i.e., w(S) =
∑

i∈S wi. The
notation Gp,w represents the weigthed graph G with edge and node weights p and w.

Let Gp,w be a weighted graph of order n. The graph bisection minimization problem
on Gp,w (GB for short) consists on determining two disjoint subsets V1 and V2 such that
V1 ∪V2 = V and w(V1)−w(V2) = k, so as the weighted sum of the edges connecting V1 and V2

is minimum. Assigning to each i ∈ V variables xi such that xi = 1 (resp. xi = −1) if i ∈ V1

(resp. if i ∈ V2), the total weight of edges between V1 and V2 is given by
∑

ij∈E pij

(

xi−xj

2

)2
.

Thus GB problem can be stated as the following binary quadratic programming problem:

GB(Gp,w) = min 1
4

∑

ij∈E

pij(xi − xj)
2

s. to wT x = k
x ∈ {−1, 1}n.

Taking into account (1) the GB problem can be written as

GB(Gp,w) = min 1
4xT Lpx

s. to wT x = k
x ∈ {−1, 1}n,

(2)

where GB(Gp,w) denotes its optimum value. The GB problem has been intensively studied
in the literature. The spectral type approach was developed in the seventies by Donath and
Hoffman [3, 4] and Fiedler [7, 8]. Recently these methods have been recovered and developed
[16, 26, 27] and others have been proposed [6, 15].

In this paper a lower bound for the GB problem valid for weigthed graphs with edge and
node weights is proposed. The bound is easily computed by solving a quadratic programming
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problem and, when k = 0 and all node weights are equal to 1, it coincides with the well known
bound of Boppana [2] (see also [24, 27]).

It is also proved that always exist a solution of the quadratic programming problem that
allows to obtain approximate solutions for the GB problem with at least a component equal
to 1 or −1. These approximate solutions can be used in heuristics for approximating the GB
problem optimal solution or in branch and bound algorithms for that problem.

The paper is organized as follows. In section 2 the lower bound for the graph bisection
minimization problem is deduced and compared with the best known bound for the case
where all node weights are equal to 1. Section 3 gives two alternative forms of computing
the proposed bound. The section 4 shows how aproximate solutions of the GB problem with
at least a component equal to 1 or −1 can be obtained. Based on this feature, a simple
heuristic for the GB problem is described. Some computational experiments performed with
this heuristic conclude the paper.

2 The proposed lower bound

Let l ∈ IRn be a vector whose components sum is zero, i.e., such that eT l = 0, where e is the
all ones n × 1 vector. As xT diag(l)x = 0 for x ∈ {−1, 1}n, problem (2) is equivalent to the
following perturbed problem

GB(Gp,w) = min 1
4

[

xT Lpx + xT diag(l)x
]

s. to wT x = k
x ∈ {−1, 1}n

or
GB(Gp,w) = min 1

2xT Hx
s. to wT x = k

x ∈ {−1, 1}n,
(3)

where H = [Lp + diag(l)] /2. This problem is equivalent to the following continuous quadratic
programming problem (e denotes, as before, the all ones n × 1 vector):

GB(Gp,w) = min 1
2xT Hx

s. to wT x = k
xT x = n
−e ≤ x ≤ e.

Consider the restricted Lagrangian dual problem of this last problem, i.e.,

max θ0(v1, v2)
s. to v1, v2 ≥ 0,

where
θ0(v1, v2) = min vT

1 (−e + x) + vT
2 (−e − x) + 1

2xT Hx
s. to wT x = k

xT x = n

or
θ0(v1, v2) = −eT (v1 + v2) + θ1(v1, v2) (4)
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with
θ1(v1, v2) = min (v1 − v2)

T x + 1
2xT Hx

s. to wT x = k
xT x = n.

(5)

Denote by x̄ and w̄ the vectors formed by the last n−1 components of x = (x1, x2, . . . , xn)T

and w = (w1, w2, . . . , wn)T , respectively. As

wT x = k ⇔ x1 =
k − w̄T x̄

w1

and

xT x = n ⇔ x̄T x̄ +

(

k − w̄T x̄

w1

)2

= n ⇔

x̄T x̄ +
k2

w2
1

− 2
k

w2
1

w̄T x̄ +
(

w̄T x̄
)2 ⇔ x̄T

(

Ī +
w̄w̄T

w2
1

)

x̄ − 2
k

w2
1

w̄T x̄ +
k2

w2
1

= n,

where Ī denotes the identity matrix of order n−1, we can substitute in (5) x1 by
(

k − w̄T x̄
)

/w1

as follows

θ1(v1, v2) = min (v1 − v2)
T

[

k−w̄T x̄
w1

x̄

]

+ 1
2

[

k−w̄T x̄
w1

x̄

]T

H

[

k−w̄T x̄
w1

x̄

]

s. to

x̄T
(

Ī + w̄w̄T

w2

1

)

x̄ − 2 k
w2

1

w̄T x̄ + k2

w2

1

= n

(6)

Therefore, if

a =

[

k/w1

0̄

]

and W =

[

−w̄T /w1

Ī

]

, (7)

where 0̄ represents the subvector of the null vector with exactly n − 1 components, it follows
that

[ (

k − w̄T x̄
)

/w1

x̄

]

= a + Wx̄.

Thus, setting M = W T W = Ī + w̄w̄T

w2

1

, problems (6) and (5) are equivalent to the next problem:

θ1(v1, v2) = min (v1 − v2)
T (a + Wx̄) + 1

2(a + Wx̄)T H(a + Wx̄)
s. to

x̄T Mx̄ − 2 k
w2

1

w̄T x̄ + k2

w2

1

= n.

Consequently,

θ1(v1, v2) = (v1 − v2)
T a +

1

2
aT Ha + θ2(v1, v2), (8)

where
θ2(v1, v2) = min (v1 − v2 + Ha)T Wx̄ + 1

2 x̄T W T HWx̄
s. to

x̄T Mx̄ − 2 k
w2

1

w̄T x̄ + k2

w2

1

= n.
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Let b = k
w2

1

M−1w̄. Substituting x̄ by s̄ + b in the last problem we obtain

θ2(v1, v2) = (v1 − v2 + Ha)T Wb +
1

2
bT W T HWb + θ3(v1, v2) (9)

where
θ3(v1, v2) = min [v1 − v2 + H (a + Wb)]T Ws + 1

2 s̄T W T HWs̄
s. to s̄T Ms̄ = ρ,

(10)

with

ρ = n − k2

w2
1

+ bT Mb =

(

n − k2

wT w

)

, (11)

taking into account that M−1 = Ī − w̄w̄T /wT w.

As M is a positive definite matrix, a non singular J can be found such that M = JT J (for
example, the Cholesky factorization could be performed with this purpose). However, in this
particular case, we can choose J as the following symmetric matrix:

J = Ī +

(√
w̄T w̄ + 1 − 1

w̄T w̄

)

w̄w̄T .

This matrix J will be used in the sequel. Taking into account that s̄T ET Es̄ = (Js̄)T Js̄,
the substitution of Js̄ by r̄ allows to write (10) as a trust region problem,

θ3(v1, v2) = min [v1 − v2 + H (a + Wb)]T WJ−1r̄ + 1
2 r̄T Qr̄

s. to r̄T r̄ =
(

n − k2

wT w

)

,
(12)

where
Q = J−1W T HWJ−1. (13)

Let
λmin(Q) = λ1(Q) ≤ λ2(Q) ≤ · · · ≤ λn−1(Q) = λmax(Q)

be the eigenvalues of Q. As Q is a symmetric matrix, there exists a set of n − 1 orthonormal
eigenvectors associated with the eigenvalues of Q. They will be represented by u1 . . . , um,
um+1, . . . , un−1, where the first m vectors (m ≤ n − 1) correspond to λmin(Q).

A lemma that gives a lower bound for θ3(v1, v2) will be stated now. To facilitate the
reading, the proof of this lemma is presented in the appendix.

Lemma 1 Let

V =
{

(v1, v2) : v1, v2 ≥ 0 ∧ [v1 − v2 + H (a + Wb)]T WJ−1ui = 0, ∀i = 1, . . . , m
}

.

Then for any (v1, v2) ∈ V the following inequality is valid:

θ3(v1, v2) ≥
1

2
λmin(Q)

(

n − k2

wT w

)

− 1

2

n−1
∑

i=m+1

{

[v1 − v2 + H (a + Wb)]T WJ−1ui

}2

λi(Q) − λmin(Q)
.

From this result it follows:
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Theorem 1 Consider the GB problem and let V be defined as in the lemma 1. Then

Φ(l) ≤ GB(Gp,w)

where

Φ(l) =
1

2
λmin(Q)

(

n − k2

wT w

)

+
1

2
(a + Wb)T H (a + Wb) + φ∗

and φ∗ is the optimal objective value of the following quadratic programming problem:

φ∗ = max
{

−eT (v1 + v2) + (v1 − v2)
T (a + Wb)

−1

2

n−1
∑

i=m+1

{

[v1 − v2 + H (a + Wb)]T WJ−1ui

}2

λi(Q) − λmin(Q)
: (v1, v2) ∈ V











(14)

Proof. Taking into account (4), (8), (9) and (12) the proof follows immediately using La-
grangian duality and the lemma 1.

This theorem asserts that Φ(l) ≤ GB(Gp,w), for all l such that eT l = 0. Then

max
l : eT l=0

Φ(l) (15)

constitutes a lower bound on GB(Gp,w). The proposed lower bound is now related with the
best well known upper bound for GB(Gp,w) when w = e (i.e., all node weights are equal to 1).
This bound was proposed in [27] (see also [24]) and can be given in the form

max
l : eT l=0

Ψ(l) (16)

where
Ψ(l) = min n

4 xT [Lp + diag(l)] x
s. to

xT x = 1
eT x = k/

√
n.

When k = 0 (16) is precisely the bound proposed by Boppana [2].

Using the substitutions that lead from problem (5) to problem (12) it can be easily seen
that the lower bound Ψ(l) writes in the form

Ψ(l) =
1

2
(a + Wb)T H (a + Wb) +

+ min (a + Wb)T HWJ−1r̄ + 1
2 r̄T Qr̄

s. to r̄T r̄ = n − k2

n
.

where H = [Lp + diag(l)] /2 and Q is given in (13). If k = 0, a + Wb = k
n
e and then

Ψ(l) = n
2 λmin (Q) . On the other hand, Φ(l) = n

2 λmin (Q) because the maximum in (14) is
attained for v1 = v2 = 0. Thus Ψ(l) = Φ(l) and consequently the lower bound given in (16)
coincides with (15) when k = 0.

When k 6= 0 it is not known whether the lower bounds (16) and (15) coincide or not. In
fact, in all tested examples the equality was confirmed. However no proof of this equality can
be done here and thus it remains an open question.
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3 Other forms of the proposed bound

In the next lemma two equivalent forms for computing φ∗ given in (14) are proposed. Its proof
is presented in the appendix.

Lemma 2 The optimal solution of problem given in theorem 1 can be obtained by solving the
problem (20) (see the appendix) or, alternatively, is given by

φ∗ =
1

2
aT Ha − 1

2
(a + Wb)T H (a + Wb) − 1

2
λmin(Q)bT Mb + ϕ∗

where

ϕ∗ = min
[

W T Ha + λmin(Q)Mb
]T

x̄ + 1
2 x̄T Ĥx̄

s. to
−w1 + k ≤ w̄T x̄ ≤ w1 + k

−e ≤ x̄ ≤ ē

(17)

with

Ĥ = W T HW − λmin(Q) M.

Using the above lemma we can now present an alternative form of computing the proposed
lower bound for GB(Gp,w) given in theorem 1.

Theorem 2 Consider the GB problem given in (2). Then

GB(Gp,w) ≥ Φ(l) =
1

2
λmin(Q)

(

n − k2

w2
1

)

+
1

2
aT Ha + ϕ∗

where ϕ∗ is given in (17).

Proof. By theorem 1

Φ(l) =
1

2
λmin(Q)

(

n − k2

wT w

)

+
1

2
(a + Wb)T H (a + Wb) + φ∗.

Then using lemma 2,

Φ(l) =
1

2
λmin(Q)

(

n − k2

wT w

)

+
1

2
aT Ha − 1

2
λmin(Q)bT Mb + ϕ∗

=
1

2
λmin(Q)

(

n − k2

wT w
− bT Mb

)

+
1

2
aT Ha + ϕ∗

=
1

2
λmin(Q)

(

n − k2

w2
1

)

+
1

2
aT Ha + ϕ∗,

where the last equality follows from (11).
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4 A heuristic for the GB problem

To appraise the pratical value of the proposed bound some computational experiments were
perfomed on a few graphs. In these tests a simple heuristic for approximately solving the GB
problem was used. It is based on a characterization of the optimal solutions of problem (17)
given in the next theorem (its proof is also postponed to the appendix).

Theorem 3 Consider the problem (17) stated in theorem 2. Then there exists an optimal
solution x̄ of (17) such that the vector

x =

[

k−w̄T x̄
w1

x̄

]

with one more component that x̄ is an approximate optimal solution of problem (2) and verifies:

(a) wT x = k;

(b) For some i ∈ {1, 2, . . . , n}, xi ∈ {−1, 1}.

This theorem establishes that always exist a solution of the problem (17) that allows to
obtain an approximate solution of the GB problem with at least a component equal to 1 or
−1. This approximate solution can be used in heuristics for approximating the GB problem
optimal solution or in branch and bound algorithms for that problem.

One of the possible heuristics is the following: for obtaining a bisection of a weighted graph
Gp,w into two disjoint subsets V1 and V2 such that V1∪V2 = V and w(V1)−w(V2) = k perform
the steps:

1. Solve the problem (17) and apply the theorem 3 to obtain an approximate solution x of
the GB problem with at least a component equal to 1 or −1;

2. Sort, in increasing order, the components of the approximated solution x;

3. Compute the
[

w(V1)
w(V )

]th

weighted quantile (by the weights wi) for the indices list cor-

responding to the sorted the components of x (in case w(V1) = w(V2) this means to
compute the weighted median of the components of x);

4. Include in V1 the vertices that correspond to the components of x less or equal to the
computed quantile; include the remaining nodes in V2.

It should be noted the importance of theorem 3 in the context of this heuristic. For
example, if k = 0 the null vector is an obvious solution of (17), taking into account that
W T Ha + λmin(Q)Mb = 0 (recall the definitions of a and b) and Ĥ is positive semidefinite.
From the null vector we cannot extract any valuable information about the optimal solution
of GB problem; but we can enrich our knowledge about this solution, by using the theorem 3
to pass to an alternative solution with at least a component 1 or −1.
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The graph of figure 1 illustrates the above considerations. In fact, considering w = e,
k = 0, l = 0 and Ap equal to the adjacency matrix of the graph, the null vector constitutes
an optimal solution of problem (17). Aplying the procedure described in the proof of theorem
3, we obtain the alternative solution x = (−1,−1, 1, 1, 1,−1) which is precisely an optimal
solution of the GB problem. The optimal objective value in this case is 3 and the optimal
partition is given by V1 = {1, 2, 6} and V2 = {3, 4, 5}.

1

23

4

5 6

Figure 1: A graph that illustrates the usefulness of theorem 3.

Edge Cuts

Graph nodes/edges k Heur. Chaco

D&H 20/51 2 14 18

D&H 20/51 3 23 28

D&H 20/51 4 31 30

D&H 20/51 10 42 42

Col. HB 132/1758 2 304 304

Col. HB 132/1758 3 628 628

Col. HB 132/1758 4 896 853

Col. HB 132/1758 15 1403 1351

Col. HB 153/1135 2 92 98

Col. HB 153/1135 3 144 144

Col. HB 153/1135 4 261 260

Col. HB 153/1135 5 347 359

Col. HB 153/1135 10 638 611

Table 1: Some computational tests.

We now present the computational tests performed with the above heuristic. The tests
were made on a PC, using the interactive matrix language MATLAB (version 5.3). The routine
quadprog.m provided in the Optimization Toolbox was used to compute the optimal solution
of (17).

For each of tested graphs, the problem (17) was solved for several values of k, considering
w = e, l = 0 and Ap coincident with the adjacency matrix of the graph. Then, approximate
solutions of the GB problem with at least a component equal to 1 or −1 were determined
and the remaining steps of the above heuristic were performed. The table 1 presents the
obtained results. The first graph (called D&H) appears in [4, 27]. The remaining graphs
belong to the Harwell-Boeing collection. The obtained results were compared with the ones
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produced by the well known package Chaco [14]. In spite of the limited number of performed
computational tests the obtained results are encouraging as they are similar to those of Chaco,
a very widespread software for graph partitioning. This is a positive fact but using local
optimization and refinement techniques to the generated approximating solutions are necessary
in order to have a competitive heuristic. On the other hand, better results can be expected if
other more favorable vectors l are used. It is not known yet how to consistently update l to
obtain more accurate lower bounds without using semidefinite programming.

To finalize, it seems desirable to investigate the classes of graphs for which the proposed
bound and heuristic lead to the optimal solution. And, naturally, continuing to study the
open question leaved in section 2 about the relationships between the proposed bound and the
Rendl and Wolkowicz bound is a project for future work.

Appendix

Proof of Lemma 1. Let (v1, v2) ∈ V and suppose that the optimal value of problem (12),

θ3(v1, v2), is attained for r̄∗ =
∑m

i=1 βiui+
∑n−1

i=m+1 γiui. Then, as r̄∗T r̄∗ =
(

n − k2

wT w

)

,
∑m

i=1 β2
i =

(

n − k2

wT w

)

−∑n−1
i=m+1 γ2

i . Substituting r̄∗ in the objective function for (12) and

using the last equality yields,

θ3(v1, v2) = [v1 − v2 + H (a + Wb)]T WJ−1r̄∗ +
1

2
r̄∗T Qr̄∗

= [v1 − v2 + H (a + Wb)]T WJ−1
n−1
∑

i=1

(r̄∗T ui)ui +
1

2

n−1
∑

i=1

λi(Q)(r̄∗T ui)
2

=
n−1
∑

i=1

(r̄∗T ui) [v1 − v2 + H (a + Wb)]T WJ−1ui

+
1

2
λmin(Q)

m
∑

i=1

β2
i +

1

2

n−1
∑

i=m+1

λi(Q)γ2
i

=
n−1
∑

i=m+1

γi [v1 − v2 + H (a + Wb)]T WJ−1ui +
1

2
λmin(Q)

(

n − k2

wT w

)

− 1

2
λmin(Q)

n
∑

i=m+1

γ2
i +

1

2

n
∑

i=m+1

λi(Q)γ2
i



C. Luz / Investigação Operacional, 23 (2003) 85-101 95

or

θ3(v1, v2) =
1

2
λmin(Q)

(

n − k2

wT w

)

+
n−1
∑

i=m+1

γi [v1 − v2 + H (a + Wb)]T WJ−1ui

+
1

2

n−1
∑

i=m+1

[λi(Q) − λmin(Q)] γ2
i

+
1

2

n−1
∑

i=m+1

{

[v1 − v2 + H (a + Wb)]T WJ−1ui

}2

λi(Q) − λmin(Q)

− 1

2

n−1
∑

i=m+1

{

[v1 − v2 + H (a + Wb)]T WJ−1ui

}2

λi(Q) − λmin(Q)

Thus,

θ3(v1, v2) =
1

2
λmin(Q)

(

n − k2

wT w

)

− 1

2

n−1
∑

i=m+1

{

[v1 − v2 + H (a + Wb)]T WJ−1ui

}2

λi(Q) − λmin(Q)

+
1

2

n−1
∑

i=m+1

[λi(Q) − λmin(Q)]

{

γi +
[v1 − v2 + H (a + Wb)]T WJ−1ui

λi(Q) − λmin(Q)

}2

.

and

θ3(v1, v2) ≥
1

2
λmin(Q)

(

n − k2

wT w

)

− 1

2

n−1
∑

i=m+1

{

[v1 − v2 + H (a + Wb)]T WJ−1ui

}2

λi(Q) − λmin(Q)

as required.

Proof of Lemma 2. To prove this lemma some additional notation is necessary. Let U be
the matrix whose columns are the orthonormal eigenvectors ui, i = 1, . . . , n − 1 of Q. Denote
by V = [um+1 · · ·un−1] the (n − 1) × (n − 1 − k) matrix obtained from U by eliminating the
m columns of the eigenvectors corresponding to the smallest eigenvalue λmin(Q) of Q. In
addition, the symbol Λ will denote the diagonal matrix whose entries are 1/[λi(Q)− λmin(Q)]
with i = m + 1, . . . , n − 1.

Let (v1, v2) ∈ V. Then [v1 − v2 + H (a + Wb)]T WJ−1ui = 0, i = 1, . . . , m, and, bearing in
mind the introduced notation, there exists z ∈ IRn−1−m such that

J−1W T [v1 − v2 + H (a + Wb)] = V z (18)

m

JV z +
w̄

w1
(v11 − v21) + v̄2 − W T H (a + Wb) = v̄1 (19)

where v11 and v21 are the first components of v1 and v2, and v̄1, v̄2 are, respectively, the
subvectors containing the remaining components. Therefore

(v1, v2) ∈ V ⇐⇒
{

JV z + w̄
w1

(v11 − v21) + v̄2 − W T H (a + Wb) ≥ 0

v̄2, v11, v21 ≥ 0
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and taking into account (19),

−eT (v1 + v2) = −2ēT v̄2 − ēT JV z −
(

ēT w̄

w1
+ 1

)

v11 +

(

ēT w̄

w1
− 1

)

v21

+ ēT W T H (a + Wb)

where ē is, as before, the all ones (n − 1) × 1 vector. Additionally from (18) it follows

W T (v1 − v2) = JV z − W T H(a + Wb)

and then

(v1 − v2)
T (a + Wb) =

k

w1
(v11 − v21) + bT JV z − bT W T H(a + Wb).

Consequently, the problem giving φ∗ in theorem 1 can be written in the following equivalent
form

φ∗ = max ēT W T H (a + Wb) − bT W T H(a + Wb)

−2ēT v̄2 + (b − ē)T JV z −
(

ēT w̄
w1

+ 1 − k
w1

)

v11

+
(

ēT w̄
w1

− 1 − k
w1

)

v21 − 1
2zT Λz

s. to
JV z + w̄

w1
(v11 − v21) + v̄2 − W T H (a + Wb) ≥ 0

v̄2, v11, v21 ≥ 0

(20)

Consider the Lagrangian dual problem of (20), i.e.,

min h(x1, x2, x3, x4)
s. to x1, x2, x3, x4 ≥ 0,

(21)

where x1, x2 ∈ IRn−1, x3, x4 ∈ IR and

h(x1, x2, x3, x4) = max
{

ēT W T H (a + Wb) − bT W T H(a + Wb)

−2ēT v̄2 + (b − ē)T JV z −
(

ēT w̄

w1
+ 1 − k

w1

)

v11

+

(

ēT w̄

w1
− 1 − k

w1

)

v21 −
1

2
zT Λz

+xT
1

[

JV z +
w̄

w1
(v11 − v21) + v̄2 − W T H (a + Wb)

]

+xT
2 v̄2 + x3v11 + x4v21 : z ∈ IRn−1−m, v̄2 ∈ IRn−1, v11, v21 ∈ IR

}

The function h is linear in v̄2, v11 and v21, and convex quadratic in z. As h(x1, x2, x3, x4) is
finite only if the gradient with respect to (z, v̄2, v11, v21) vanishes, i.e.,

V T J (b − ē) − Λz + V T Jx1 = 0 (22)

−2ē + x1 + x2 = 0 (23)

−
(

ēT w̄

w1
+ 1 − k

w1

)

+
xT

1 w̄

w1
+ x3 = 0 (24)

(

ēT w̄

w1
− 1 − k

w1

)

− xT
1 w̄

w1
+ x4 = 0, (25)
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we have

h(x1, x2, x3, x4) = ēT W T H (a + Wb) − bT W T H(a + Wb)

+ (−2ē + x1 + x2)
T v̄2

+

[

−
(

ēT w̄

w1
+ 1 − k

w1

)

+
xT

1 w̄

w1
+ x3

]

v11

+

[(

ēT w̄

w1
− 1 − k

w1

)

− xT
1 w̄

w1
+ x4

]

v21

+ (b − ē)T JV Λ−1V T J (x1 + b − ē) + xT JV Λ−1 V T J (x1 + b − ē)

− 1

2
(x1 + b − ē)T JV Λ−1ΛΛ−1V T J (x1 + b − ē) − xT W T H (a + Wb)

or else h(x1, x2, x3, x4) = +∞. Therefore, setting x1 = −x̄ + ē and

Ĥ = JV Λ−1V T J = J
[

Q − λmin(Q)Ī
]

J

= W T HW − λmin(Q)W T W = W T HW − λmin(Q)M,

we can write h(x1, x2, x3, x4) in the following form, taking into account (22)–(25):

h(x1, x2, x3, x4) = ēT W T H (a + Wb) − bT W T H(a + Wb)

+ (b − ē)T Ĥ (b − x̄) + (ē − x̄)T Ĥ (b − x̄)

− 1

2
(b − x̄)T Ĥ(b − x̄) − (ē − x̄)T W T H (a + Wb)

= −bT W T H(a + Wb) +
1

2
(b − x̄)T Ĥ(b − x̄) + x̄T W T H (a + Wb)

or

h(x1, x2, x3, x4) = −bT W T Ha − 1

2
bT W T HWb +

1

2
x̄T Ĥx̄ + λmin(Q)x̄T Mb

− 1

2
λmin(Q)bT Mb + x̄T W T Ha.

Consequently, (21) can be written as

min −bT W T Ha − 1
2bT W T HWb − 1

2λmin(Q)bT Mb

+
[

W T Ha + λmin(Q)Mb
]T

x̄ + 1
2 x̄T Ĥx̄

s. to
−x̄ + x2 = ē

−
(

ēT w̄
w1

+ 1 − k
w1

)

− x̄T w̄
w1

+ ēT w̄
w1

≤ 0
(

ēT w̄
w1

− 1 − k
w1

)

+ x̄T w̄
w1

− ēT w̄
w1

≤ 0

−x̄ + ē ≥ 0
x2 ≥ 0

or, equivalently, taking into account that x2 does not appear in the objective function,

min −bT W T Ha − 1
2bT W T HWb − 1

2λmin(Q)bT Mb

+
[

W T Ha + λmin(Q)Mb
]T

x̄ + 1
2 x̄T Ĥx̄

s. to
−w1 + k ≤ w̄T x̄ ≤ w1 + k

−ē ≤ x̄ ≤ ē.

(26)
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Note now that the problem (20) is a superconsistent convex program (see [23]). In fact
−Λ is negative definite and a Slater point for (20) can be easily obtained taking, for example,
z = 0, v11 and v21 positive and equal, and v̄2 = (C + ε) ē, where ε > 0 and C is the greatest
component of W T H(a + Wb). Consequently, the strong duality theorem holds, implying that
the objective function values of problems (20) and (26) are both equal to φ∗. Finally, as

−bT W T Ha − 1

2
bT W T HWb =

1

2
aT Ha − 1

2
(a + Wb)T H (a + Wb) ,

the above considerations and (26) imply that

φ∗ =
1

2
aT Ha − 1

2
(a + Wb)T H (a + Wb) − 1

2
λmin(Q)bT Mb + ϕ∗,

where ϕ∗ is given in (17), as required.

Proof of Theorem 3. Condition (a) follows immediately from the definition of x since

wT x = w1

(

k − w̄T x̄

w1

)

+ w̄T x̄ = k − w̄T x̄ + w̄T x̄ = k

and
(

k − w̄T x̄
)

/w1 belongs to [−1, 1].

To prove (b) let (z, v̄2, v11, v21) and (x1, x2, x3, x4) be optimal solutions of the problems (20)
and (21), respectively. As shown in the proof of lemma 2, these problems form a primal-dual
pair with no duality gap. Thus, the above optimal solutions satisfy the Karush-Kunh-Tucker
conditions. Four of them are given in (22)–(25) and the rest are the following:

JV z +
w̄

w1
(v21 − v11) + v̄2 − W T H (a + Wb) ≥ 0 (27)

v̄2, v11, v21 ≥ 0 (28)

x1, x2, x3, x4 ≥ 0 (29)

xT
1

[

JV z +
w̄

w1
(v21 − v11) + v̄2 − W T H (a + Wb)

]

= 0 (30)

xT
2 v̄2 = 0 (31)

x3v11 = 0 (32)

x4v21 = 0. (33)

Assume that 0 < x1 < 2ē, x3 > 0 and x4 > 0 for otherwise the theorem is true taking into
account that:

• If there exists a component j of x1 such that x1j = 0 or x1j = 2, then x̄j = 1 or
x̄j = −1 in problem (17), thus proving the theorem (note that (17) and (26) have the
same feasible solutions; remember the correspondence x1 = −x̄+ē, between the solutions
of the problems (21) and (26), established in the proof of lemma 2);

• If x3 = 0, it follows from (24) that xT
1 w̄ − ēT w̄ = w1 − k and then w̄T x̄ = −w1 + k in

(17) which implies
(

k − w̄T x̄
)

/w1 = 1, i.e., the first component of x belongs to {−1, 1}
as required in the theorem;
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• Analogously the theorem is also true if x4 = 0 as, in this case, it follows from (25) that
xT

1 w̄ − ēT w̄ = −w1 − k and consequently, w̄T x̄ = w1 + k and
(

k − w̄T x̄
)

/w1 = −1, i.e.,
the first component of x belongs to {−1, 1}.

Under the above assumptions we proceed with the proof.

The definition of the matrix V entails that the rows of V T J are linearly dependent. Con-
sequently, there exist a vector q = (q1, q2, . . . , qn−1)

T , with at least a non null component, such
that V T Jq = 0. Let

λ = min{λ1, λ2, λ3}
where

λ1 = min
j

{

x1j

qj

: qj > 0

}

λ2 = min
j

{

x1j − 2

qj

: qj < 0

}

λ3 =

{ (

w1 + k + xT
1 w̄ − ēT w̄

)

/w̄T q, if w̄T q < 0
(

w1 − k − xT
1 w̄ + ēT w̄

)

/w̄T q, if w̄T q > 0
.

As V T Jq = 0, the vectors x̂1 = x1 − λq (whose components are x̂1j = x1j − λqj) and z satisfy
the condition (22) because

V T J (b − ē) − Λz + V T Jx̂1 = V T J (b − ē) − Λz + V T Jx1 − λV T Jq

= V T J (b − ē) − Λz + V T Jx1 = 0.

Also, the new variables x̂1j belong to the interval [0, 2] as follows from the definitions of
λ, λ1 and λ2 (note that x̂1j = 0 if λ = λ1 and x̂1j = 2 if λ = λ2). Thus if we substitute
x̂2 = 2ē − x̂1 for x2, the condition (23) is satisfied and the inequality x̂2 ≥ 0 is also true.

On the other hand, let x̂3 = x3 − λw̄T q/w1 and x̂4 = x4 + λw̄T q/w1. Using some algebra,
the definition of λ and λ3 and the conditions (24) and (25), it can be seen that x̂3, x̂4 ≥ 0 (we
have x̂3 = 0 if λ = λ3 and w̄T q > 0, and x̂4 = 0 if λ = λ3 and w̄T q < 0). In addition, it can
be easily checked that x̂1, x̂3 and x̂4 satisfy the conditions (24) and (25).

As results from above, the condition (29) is also satisfied by the new variables x̂1, x̂2, x̂3

and x̂4.

Finally, taking into account that the complementary conditions (30)–(33) remain true (as
all the components of JV z + w̄

w1
(v21 − v11) + v̄2 −W T H (a + Wb) and v̄1, v11 and v21 are null

because the old variables x1, x2, x3 and x4 are strictly positive), we conclude that (27) and
(28) are also true and that x̂1, x̂3 and x̂4 are optimal solutions of problem (21) which verify
at least one of the following:

• There exists a component j of x̂1 such that x̂1j = 0 (if λ = λ1);

• There exists a component j of x̂1 such that x̂1j = 2 (if λ = λ2);

• One of the equalities x̂3 = 0 or x̂4 = 0 are true (if λ = λ3 and w̄T q > 0 or if λ = λ3 and
w̄T q < 0, respectively); thus

(

k − w̄T x̄
)

/w1 = 1 or
(

k − w̄T x̄
)

/w1 = −1, respectively.
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Consequently, x̄ = −x̂1 +e is an optimal solution of (17) and the vector x =
(

k−w̄T x̄
w1

, x̄T
)T

satisfy the condition (b) of the theorem, as required.
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