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Abstract

The baker’s yeast, essentially composed by living cells of Saccharomyces cerevisiae, used
in the bread making and beer industries as a microorganism, has an important industrial
role. The simulation procedure represents then a necessary tool to understand clearly the
baker’s yeast fermentation process. The use of mathematical models based on mass balance
equations requires the knowledge of the reaction kinetics, thermodynamics, and transport
and physical properties. Models may be more or less complex, however they keep the basic
feature of linking observations together into some pattern.

A FORTRAN90-based program was developed to simulate the baker’s yeast fermen-
tation process in order to predict the dynamic behaviour of a well-mixed reactor. Mass
balances written for all the components define a system of ordinary differential equations
of initial value problem type (IVP). Considering the kinetics and the gas transfer rates
relations as part of the differential system, a differential-algebraic system (DAE) can be
defined. The simulation results were compared with the experimental values obtained in
a laboratorial five-litre fermenter, operated in fed-batch mode.

Prior to the parameter estimation procedure, an identification of the most significant
model parameters was carried out. A heuristic sensitivity analysis was performed in order
to adjust the model results with the experimental data. The Meyer and Roth method was
used to minimise the objective function, defined as the sum of the relative square errors
between the calculated and the experimental values (associated to the state variables:
biomass, glucose and ethanol).

The yield coefficients and the maximum uptake rate for glucose and oxygen were found
the most significant parameters.
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1 Introduction

Real processes in the chemical, biochemical and food industry are, in their vast majority,
non-linear MIMO (Multiple Input Multiple Output) systems. Their dynamics and control are
difficult to study both for theoretical and practical reasons. In many cases, experiments with
real industrial processes are not carried out for economy and safety reasons, and frequently
on-line measurements are not available or simply they are too expensive. Advanced control
strategies rely on adaptive techniques based on the knowledge of the system state. When
experimental observations are missing, ’software sensors’ represent a major, and often, the only
alternative to allow optimal process operation to be enforced. The robustness of such sensors
needs however to be tested in flexible environments where difficulties such as measurement
noises, time delays and loads to the process can be readily implemented on-line [1].

Living cells of Saccharomyces cerevisiae, which form baker’s yeast, are predominantly used
in bakery and beer industries. Apart from its industrial importance and economical signifi-
cance, there is a scientific interest in baker’s yeast fermentation [2].

Baker’s yeast production is carried out in a fed-batch fermenter with inoculums of Sac-
charomyces cerevisiae culture and a glucose solution as substrate feed. We may distinguish
three metabolic pathways: respirative growth on glucose, fermentative growth on glucose and
respirative growth on ethanol. Respirative pathways occur in presence of oxygen and the
fermentative one in its absence (with production of ethanol) [3].

The conventional approach for process modelling is based on mass, energy and/or popu-
lation balance equations. This form of modelling requires knowledge about reaction kinetics,
thermodynamic, transport and physical properties.

The simulation process requires the integration of a set of non-linear differential equations,
for the state variables. A set of algebraic equations, concerning mass transfer relations and
kinetics laws, can be considered as part of the system to be solved, defining a differential
algebraic equation (DAE) system or, alternatively included in the model, transforming the
system in an initial value problem (IVP) [4-5]. The simulation model needs then to be validated
with experimental data.

For an identification of the more significant model parameters a heuristic sensitivity analysis
was performed. The Meyer and Roth method [6] is used to minimise the objective function,
defined as the sum of the relative square errors between the calculated and the experimental
values. Two steps are considered. The first one identifies the most relevant kinetics parameters
and the second one, with the previous identified parameters, estimates the most relevant
yield coefficients. Depending on the research interests a multi-objective analysis can be also
performed without previous identification of the most relevant parameters [7].

2 Baker’s yeast fermentation - Modelling approach

A deterministic model for biological well-mixed fed-batch reactors, Figure 1, is obtained by
writing macroscopic balance for all the components. The simulation model also includes a
set of algebraic equations, related to the mass transfer relations and to the kinetics of baker’s
yeast growth [3].
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Figure 1: Fed-batch fermenter (F is liquid flow; @; and Q, are gaseous flow at input and output,
respectively)

2.1 Kinetic model

Depending on the environment conditions, for instance, availability of sugar and/or oxygen,
yeast growth is characterized by three metabolic pathways, respiratory and/or fermentative,
namely:

respiratory growth on glucose

O
CeH1206 + a0y + bN X [N Hs] L5 bC H i xOox Nnx + ¢COs + dH50 (2.1)

fermentative growth on glucose

CeH1206 + gN X [NHg] & gCiHgxOox Nyx + hCOs + iHs0 + jC3HgO (2.2)

respiratory growth on ethanol

o
CoHgO + kOy + INX [N Hs) L2 10, Hy xOox Ny x + mCOs + nHy0 (2.3)

where 9, u%, n9: specific growth rates (1/h) for the three pathways, respectively; subscripts
S and E mean glucose and ethanol.

The metabolic pathways of fermentative growth on glucose and oxidative growth on ethanol
are competitive. This competition is governed by the respiratory capacity of the cells. If the
instantaneous oxygen uptake capacity exceeds the oxygen need for total respiratory glucose
uptake, then, all sugar uptakes follows the respiratory pathway (2.1) with the remaining oxygen
being spent on ethanol (if present) respiratory uptake (2.3). Otherwise, if the instantaneous
oxygen uptake capacity is not enough, then, part of glucose uptake follows the respiratory
pathway (2.1) while the remaining follows the fermentative pathway (2.2). Figure 2 illustrates
the mechanism.

Several kinetics models are proposed for baker’s yeast growth [8]. In this work we considered
Monod type equations, following Sonnleitner and Képpeli work [9], as described and explained
in [3].



250 C.P. Leao, F.O. Soares / Investigagcao Operacional, 24 (2004) 247-263

suh-critical critical supra-criitical

; ;h
gheose used in eq. (11 ethanol ethancl ethanol in
consmned  produced EXC85S

Figure 2: Metabolic mechanism of the baker yeast. The grey ring represents the respiratory bottleneck
The total specific growth rate, u¢, is the sum of the growth rates for the three pathways
O O
e = pg + Hs + pE- (2.4)

The specific growth rates,u;, can be related to the corresponding substrate fluxes, ¢, and yield
coefficients, Y, by

pe =Yy 548 + Y545 + Y 548 (2.5)

where Y /s and Yy grepresent the yield coefficients of biomass (X) in glucose (S) in the
oxidative and fermentative phases, respectively; Y)?/EE is the yield coefficient of biomass in
ethanol (E) in the oxidative phase in ethanol.
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Table 1: Baker’s yeast kinetics equations for the respirative and respiro-fermentative regimes

aqs< qo ng =Y¢ 505 (2.11)
Respirative e =0 (2.12)
Regime pS = min (Mgl,u%) (2.13)
aqs>qo pg = Y)?/S.%O (2.14)
Respiro-Fermentative | pg =Yy o. (g5 —%2)  (2.15)
Regime p9 =0 (2.16)

As ethanol uptake is influenced by the priority of glucose uptake, which functions as an
inhibitor, the specific growth rate on ethanol can be described as

max E K’L
F E+KpS+K;

pe = p (2.6)

where pp®* is the maximal specific growth rate, K; is the inhibition parameter and Kg is the
saturation parameter.

However, this equation holds true only if there is an available respiratory capacity of the
cells.

The glucose uptake, gg, is slightly different because it follows two metabolic pathways:
oxidative and fermentative

as = q$ + & (2.7)

The glucose, gg, and oxygen, ¢,, uptake follows Monod kinetics, respectively

S
S+ K

max

QS :qs

(2.8)

q (2.9)

max O
maxr

NGRS
where ¢/

is the maximal specific glucose uptake rate, Kg and Ko are saturation parameters
and ¢3™* is the maximal specific oxygen (O) uptake rate.

From (2.1), it can be seen that the oxidative glucose uptake depends on the availability of
dissolved oxygen, and may be defined as

(]O
g2 =% (2.10)
where a is the stoichiometric coefficient of the oxygen in the respiratory pathway of glucose

and q8 is the oxygen uptake on glucose.

Two situations may occur: excess of oxygen that implies no fermentative growth of biomass
or lack of oxygen and consequently excess of glucose that implies no respiratory growth on
ethanol.

Table 1 resumes mathematically the two situations that coexist [10].
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Two auxiliary equations, (2.17) and (2.18), must be added for the estimation of the specific
growth rate on ethanol, defined as:

E K;
O max i
= 2.17
Fen =Hle K. S T K, (2:17)
and
Yelo
M%g = yOF (go — aqs) - (2.18)
X/E

The relevant kinetic data were taken from Sonnleitner and Képpeli [9] and [11].

2.2 Mechanistic model

Considering that the yield coefficients, Y’s, are constant and the dynamics of the gas phase
can be neglected, the following set of differential equations was obtained:

mass balance for the biomass

dX

T (Mg+ﬂg+M%_D)X (2.19)
mass balance for the sugar
ﬁ:(— i “g>X+(Sf—S)D (2.20)
dt Y)?/S Yi/s

where Sy is the substrate concentration in the feed and D is dilution rate (ratio feed rate/volume),

mass balance for the ethanol

E r O
d—:(’js . %%)X—DE (2.21)
dt YX/E YX/E
mass balance for the oxygen
o o
O _ (B Fe )y poiorR (2.22)
dt Yo Yx /%
mass balance for the carbon diozide
dC < pg Wy ug )
— = + 55—+ X—-DC—-CTR (2.23)
dt Y;g/o Y3e Y)?/EC

accumulation of the working volume during the fed-batch process

dv
— =DV 2.24
o (2.24)

The gas transfer rates are given by:

OTR = K%a(0* — 0) (2.25)
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Figure 3: Experimental set-up for baker’s yeast production

CTR = K%a(C — C¥) (2.26)

where K} a are overall mass transfer coefficients for oxygen and carbon dioxide and O* and
C* are the corresponding equilibrium concentrations.

The set of equations (2.19-2.24) defines an IVP model and the set of equations (2.19-2.24,
2.25-2.26, 2.11-2.13 or 2.14-2.16) defines a DAE model [5]. These two different approaches
were presented and discussed elsewhere [4].

3 Experimental set-up

In this section a brief description of the experimental set-up is presented. For more details
see [12-13]. Figure 3 illustrates the macro experimental set-up used comprising a five-litre
fermenter with temperature control, aeration and agitation. It is equipped with sensors for
on-line measurement of environment variables, such as: temperature, pH and concentration
of dissolved oxygen. These variables are monitored and controlled by a direct digital control
unit (DCU, Biostat MD). Each variable has its own control loop, with appropriate parameters,
which can be modified by the user or through the supervisor computer. The DCU actuates in
each final control element, as for example, acid and base pumps for pH control. The pumps
and electrodes calibration is done with help of this control unit.

The fed-batch fermentation starts with a two and a half litre volume substrate medium and
an inoculum of 0.5 1, added through a peristaltic pump in a profile dictated by a control law.
The substrate addition is monitored with the help of a balance, by means of mass variation of
the glass that contains the glucose solution. The feeding ends when the maximum volume is
attained (the fermentation time is about 15 to 20 hours).

The knowledge of liquid phase composition, in terms of state variables, is obtained by
measuring the following variables: biomass, glucose, dissolved ethanol, oxygen and carbon
dioxide. Each variable are measured and analysed by specific sensors and methodologies.

A computer and other hardware are linked to the DCU in order to implement data acquisi-
tion, monitoring and open and closed control loop strategies (in open loop to impose constant
or variable feed flow and in closed loop to test PID laws and adaptive control algorithms). In
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order to overcome the difficulties of off-line measures of biomass and glucose, the supervisor
computer also determines their concentration by on-line estimation techniques.

4 Heuristic sensitivity analysis

As the baker’s yeast fermentation is a highly non-linear system, differences in experimental
and simulation results are significant. In order to overcome this problem, some of the model
parameters are adjusted using an optimization technique based on Meyer and Roth method
[6]. The objective function to be minimised, (4.27), is the sum of the errors associated to
biomass, glucose and ethanol. Only three of the five state variables are used due to limitations
on the optimization solver.

nerp d exp\ 2 nexp mod exp\ 2 nexp mod exp \ 2
X mod _ x¢ S. -5 E. — Ef
Fpj = Z (z—z> + Z <%—Z> + Z <1—1> (4.27)

exp exp exp
i=1 Xi i=1 Si i=1 Ei

where subscripts exp and mod refer to experimental and simulation model results, respectively;
nexp is the number of experimental points.

In order to quantify the performance of parameters estimation a new variable is defined,
mean error, Er:
Fobj
3 nexp

Er = (4.28)

being constant 3 the number of state variable considered in (4.27).

In the overall model (mechanistic and kinetics) there are 17 parameters to be studied
(9 yield coefficients Y and 8 kinetic parameters). As previously mentioned only three state
variables are considered in the optimization methodology. Biomass, glucose and ethanol are
chosen due to their relevant role in the fermentation process. As a consequence, also only
three parameters can be estimated simultaneously. As a first approach, an identification of
the most relevant parameters in the model was performed. In this sense, relevant means the
measure of their effect on the model. Heuristic sensitivity analyses were performed based on
empiric evaluation of results. The first heuristic analysis calculates the most relevant kinetics
parameters. The second heuristic analysis, with the previously identified kinetics parameters,
estimates the most relevant yield coefficients. The methodology followed is described in the
next section.

5 Modelling Simulation procedure

The simulation programs used for the sensitivity analysis of baker’s yeast fed-batch produc-
tion were developed in FORTRAN90 (adaptation of some subroutines described in [6]). All
simulations were performed in a Pentium PC platform.

Five experiments were carried out with the initial conditions presented in Table 2. The
experiments are named as EXPCOi, where ¢ equal 1, 3, 4, 6 and 7. All the experiences were
performed in the experimental set-up (Figure 3) previously described. EXPCO07, considered for
comparison purpose, was run in batch (F=0 1/h) and the others were performed as fed-batch
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Table 2: Initial conditions in the five experiences
Initial values
EXPCOL | S; (g/1) | F (i/h) | V () [X (/) [ S &/ | E (/1) [ O (&/V | C &/1)
EXPCO01 25 0.10 3.30 0.297 1.276 0.810 0.0066 0.0020
EXPCO03 100 0.15 2.75 1.545 0.292 2.933 0.0066 0.0020
EXPC04 5) 0.15 2.75 1.400 25.443 3.800 0.0066 0.0020
EXPC06 25 0.15 2.75 1.455 0.000 1.836 0.0066 0.0020
EXPCo07 0 0 2.75 0.222 21 0.333 0.0066 0.0020

Table 3: Kinetics parameters in the sensitivy analysis run

Simulation ¢ g% pulr

Run
0* 3.5 0.256 0.17
1 10.0 0.256 0.17
2 3.5 1.0 0.17
3 3.5 0.256 10.0
4 0.35 0.256 0.17
5 3.5 0.256 0.01
6 3.5 0.01 0.17

* literature values [9, 11].

fermentations, for different substrate flows (F). These values were chosen taking into account
the set-up limitations.

6 Results and Discussion

In other to identify the most significant model parameters, several simulation runs were per-
formed, changing one parameter at a time, and having as a reference the literature values
[9, 11]. Due to their important role in the model definition, the kinetics parameters, ¢7***,
q*** and p***, are the first to be chosen for sensitivity analysis. Table 3 resumes the values
used (empirically assumed) in each simulation performed. Run 0 corresponds to the literature

values.

Figure 4 shows the biomass (X), glucose (S) and ethanol (E) profiles obtained with the
kinetics parameters presented in Table 3 (subscripts 0 to 6 correspond to the simulation runs).
The dot points correspond to experimental data and the lines to simulation values.

Through Figure 4, it is clear that runs 4 and 6 change significantly the profiles (x4 and
x6 profiles for biomass, s4 and s6 for glucose, and e4 and e6 for ethanol). These simulation
runs correspond to the decrease on ¢"** and ¢)*** kinetics parameters, respectively for glucose

and oxygen (Table 3). For further study, these two parameters were identified to be the most



256 C.P. Leao, F.O. Soares / Investigagcao Operacional, 24 (2004) 247-263

0 2 4 6 8 10 12 14 16 18 20

1.6 35 30
s6
14 " ”s
1.2 -
1,0 - 20 4
=’ 20 — e0,e1,e2,e3,e5
208 O
%) 115 w
oe 10
0,4 1 s0,s3,s5 10
1 2
0,2 + s 5 5 ;,
0.0 -0 0 ‘ — : : : — :
0 2 4 6 8 10 12 14 16 18 20 0O 2 4 6 8 10 12 14 16 18 20

t (h) t(h)

Figure 4: Biomass(X),glucose(S) and ethanol (E) profiles for the seven runs with the kinetics param-
eters presented in Table 3. The dot points correpond to experimental data and the lines to simulation
values. Subscripts 0 to 6 correspond to the simulation runs.

relevant for baker’s yeast production. The maximum specific growth rate on ethanol, u7***,

does not influence simulation state variables profiles (the x0, x3 and x5 profiles for biomass,
the s0, s3 and sb profiles for glucose and the €0, e3 and eb profiles for ethanol are coincident).

Table 4 resumes the estimated values, for the two relevant parameters, ¢7'** and ¢)'**

obtained in each run. The mean values of all the estimates and the literature values are also
shown. These mean values enable an easily comparison with the literature ones. The objective
function (4.27) and the mean error (4.28) obtained in each experiment are also presented.

There is in fact a large difference in the results obtained in the five experiences. The mean
value for maximum uptake in glucose, ¢7*** is similar to the literature but, ¢)'** is approxi-
mately half of the value in the literature. Considering maximum glucose uptake parameter, it
varies from 0.79 in EXPC04 to 8.31 in EXPCO01. Taking into account the initial conditions in
each run (Table 2) it is clear that as sugar concentration in feed stream decreases from 25 g/1

in EXPCO01 to 5 g/l in EXPC04, the glucose uptake also decreases sharply.

For a better understanding of the influence of these parameters in the X, S and E profiles,
a graphical representation for EXPCO03 was considered, Figure 5. The subscript (1) refers to
literature parameters, (2) to the estimated values and (3) to the mean of estimated values of

q"** and ¢)***. The dot points correspond to the experimental data.

Even with the estimated values for that experience, x2, s2 and e2 profiles in Figure 5,
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Table 4: Estimated values for ¢7*** and ¢"*, objective function and mean error in the five experiences

under the initial conditions described in Table 2.

Ezperiment qurrer g Objective Function Mean Error

(4.27) (4.28)
EXPCO01 831 0.154 9.35 0.490
EXPCO03 3.16 0.114 11.54 0.544
EXPC04 0.79  0.071 3.33 0.304
EXPC06 4.65 0.184 6.90 0.421
EXPCO7 1.78 0.1625 11.72 0.571

Mean 3.74  0.137

Literature [9, 11] 3.5  0.256

there are still a significant difference between the model and experimental results. Therefore,
a second heuristic sensitivity analysis was carried out in order to improve the results for
experiment EXPC03.

The same simulation program was employed, considering the initial conditions described in
Table 2. The parameters referred below were selected and their values were changed arbitrary.
This second analysis concludes that:

e ¢"** — only influences glucose profile;
o 4" — not relevant;
e ¢'** — influences on the reverse order biomass and ethanol;

e Kja — influences on the reverse order biomass and ethanol;
e K — only influences glucose profile;

e K, — influences on the reverse order biomass and ethanol;
e K. and K; — not relevant;

e Yield coefficients — YY", , YY"

2/s0 Ygjer Yoy and Y72, are relevant.

Considering EXPCO03, with ¢7*** and ¢'** values previously estimated an optimization run
is performed in order to adjust Y| /s and Y Je values. Figure 6 shows the new profiles obtained

for biomass (X), glucose (S) and ethanol (E).

Comparing Figure 5, profiles (2), and Figure 6, there is a significant improvement; i.e. the
experimental data is better adjusted by the model behavior.

In Table 5 the estimated and literature values for Y

/s Y! Je obtained are presented with
the objective function and the mean error obtained.

With the new values for these four parameters, ¢7***, ¢7***, YJ/S, Ya’;/e, an optimization run

is then performed in order to estimate Yx"/ s and Y?, . Figure 7 shows the best results attained

z/o"
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Figure 5: Biomass (X), glucose (S) and ethanol (E) profiles in experiment EXPC03. The subscript
(1) refers to literature parameters, (2) to the estimated values and (3) to the mean of estimated values

of ¢, /s and ¢7***. The dot points correspond to experimental data.
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Figure 6: Biomass (X), glucose (S) and ethanol (E) in EXPC03 with ¢***, ¢7*** Y’

S x/s’

YT‘

/e estimated

values (line) and experimental data (dot).

Table 5: Estimated values for Y, /s and Y Je and objective function and mean error obtain for EXPCO3.
Ezxperiment ;/S x"/e Objective Function Mean Error
(4.27) (4.28)
EXPC03 0.04 0.16 7.30 0.433

Literature [9, 11] 0.05 0.10

for this new experiment. Biomass and ethanol are significantly improved. However, glucose
behavior in the first four hours is slightly worst than the one obtained without Y;’/s and Yz"/o
estimates (Figure 6). We must point out that the six parameters were adjusted in pairs.

The estimated and literature values for Y| /s Y’ /e ATe presented in Table 6 in addition with

the respective objective function and the mean error.

Globally, it is apparent that a variability of the microorganisms metabolic behavior has, in
a mathematically point of view, a relation to the variability of the characteristic parameters,
namely yield coefficients and kinetics values [14].
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Table 6: Estimated values for Yy, and Y, and objective function and mean error obtain for EXPCO3.

Ezxperiment Y;/s :LT/e Objective Function Mean Error
(4-27) (4-28)
EXPC03 0.86 0.63 5.68 0.385

Literature [9, 11] 0.49 1.20

0 2 4 6 8 10 12 14 16 18 20
t(h)

20

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
t (h) t(h)

Figure 7: Biomass (X), glucose (S) and ethanol (E) in EXPC03 with ¢7***, ¢/, Y;/S, Y;/e, Y;/S and
Y7, estimated values (line) and experimental data (dots).
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7 Conclusions

A deterministic model for fed-batch baker’s yeast production was presented. The mathematical
model, differential mass balance equations together with mass transfer and kinetics equations,
considered as an IVP problem, was simulated in a FORTRAN90 based system.

The theoretical model was validated with a data set corresponding to five experimental
open loop runs: four in fed-batch operation mode and one in batch mode.

As a significant discrepancy between simulated and experimental results was verified, there
was a need for parameter estimation. In order to decide which parameters were the most
relevant in model performance, a heuristic sensitivity analysis was taken. The maximum
uptake rate for glucose and oxygen and the yield coefficients were seen to be the most significant
model parameters. The number of parameter to be estimated at the same time was a software
limitation (maximum three).

The apparent variability in microorganism behaviour motivates the thirst for process
knowledge and understanding.

8 Suggestions for further research

As the optimization routine has a limitation in the number of parameters that can be esti-
mated together (three) we are now starting a different method for estimating a larger number
of parameters (depending only upon the experimental data available on each run), using a
Minimum Square technique [15]. So, with the experimental fed-batch baker’s yeast results,
related to initial conditions (inputs) and final concentrations (outputs), yield coefficients and
kinetic parameters are to be estimated together.
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Nomenclature

C dissolved carbon dioxide concentration (g/1)
c* carbon dioxide saturation concentration (g/1)
E ethanol concentration (g/1)
Er mean error
Fobj objective function
K; inibition parameter

% aoverall mass transfer coeficient for component i (1/h)
0) dissolved oxygen concentration (g/1)
O~ oxygen saturation concentration (g/1)
S glucose concentration (g/1)
Se glucose concentration in the feed (g/1)
\% liquid volume of reactor (1)
X biomass concentration (g/1)
Yaj"/S yield coeficient biomass/glucose in oxidative pathway in glucose
Y;/S yield coeficient biomass/glucose in fermentative pathway in glucose

i Je yield coeficient biomass/ethanol in fermentative pathway in glucose

mo/ee yield coeficient biomass/ethanol in oxidative pathway in ethanol

mo/ , yield coeficient biomass/oxygen in oxidative pathway in glucose

mo/eo yield coeficient biomass/oxygen in oxidative pathway in ethanol

z"/ . yield coeficient biomass/carbon dioxide in oxidative pathway in glucose

i Je yield coeficient biomass/carbon dioxide in fermentative pathway in glu-

cose
x"/ec yield coeficient biomass/carbon dioxide in oxidative pathway in ethanol

Small letters

a a is the stoichiometric coefficient of the oxygen in the respiratory path-
way of glucose
nexp number of experimental points

o total oxygen uptake (1/h)
a8 oxygen uptake on glucose (1/h)
qs total glucose uptake (1/h)
g7 maximum glucose uptake (1/h)
q° glucose uptake in the oxidative pathway (1/h)
q: glucose uptake in the fermentative pathway (1/h)
q° ethanol uptake in the oxidative pathway (1/h)
¢ maximum oxygen uptake (1/h)
t time (h)
Greek symbols

L specific growth rate (1/h)
u* maximum oxidative specific growth rate on ethanol (1/h)
14 oxidative specific growth rate on ethanol (1/h)
Umaz ~Maximum specific growth rate (1/h)
T fermentative specific growth rate on glucose (1/h)
1 oxidative specific growth rate on glucose (1/h)
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