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ABSTRACT 
The study explores the technical optimization of an athlete through the use of intelligent system 
performance metrics that produce information obtained from inertial sensors associated to the coach's 
technical qualifications in real time, using Mixed Methods and Machine Learning. The purpose of this study 
is to illustrate, from the confusion matrices, the different performance metrics that provide information of 
high pertinence for the sports training in context. 2000 technical fencing actions with two levels of 
complexity were performed, captured through a single sensor applied in the armed hand and, 
simultaneously, the gesture’s qualification through a dichotomous way by the coach. The signals were 
divided into segments through Dynamic Time Warping, with the resulting extracted characteristics and 
qualitative assessments being fed to a Neural Network to learn the patterns inherent to a good or poor 
execution. The performance analysis of the resulting models returned a prediction accuracy of 76.6% and 
72.7% for each exercise, but other metrics indicate the existence of high bias in the data. The study 
demonstrates the potential of intelligent algorithms to uncover trends not captured by other statistical 
methods. 
Keywords: artificial neural networks, confusion matrix, performance analysis, mixed methods, sports. 
 

 

INTRODUCTION 

When it comes to the study of the 

effectiveness and efficiency of an athlete’s 

performance, technology provides us with 

invaluable tools for the treatment and analysis of 

large amount of data with relative ease. 

Intelligent systems are particularly useful in the 

detection of patterns and extraction of other 

highly relevant information that cannot easily be 

determined through normal statistical means (de 

Souza et al., 2013; Whiteside et al., 2017). 

However these systems are not limited to work 

exclusively with purely quantitative, biometric 

data. 

Machine learning algorithms are often used to 

automatically identify systems of movements, 

actions and behaviors based on a classification 

approach. Classes which can be defined not only 

by the distinct differences in the collected 

metrics, but by more abstract definitions of what 

they intend to teach the system how to identify 

(e.g.: detecting if the subject is standing, sitting 

or lying down) (Alpaydin, 2014; Lara & Labrador, 

2013; Sammut & Webb, 2017; Taylor et al., 

1994).  

The same approach can be applied to the 

coach’s assessment. When performing a study in 

context of the actions performed by the athlete 

and measuring their performance, either during 

the competition or during practice, a coach 

performs a qualitative evaluation based on their 

highly honed, but ultimately subjective and 

empirical knowledge (de Souza et al., 2013; 

Whiteside et al., 2017). Which can be translated 

to a nominal measurement unit the intelligent 

system can use as an input variable. As such the 

performance analysis metrics used to evaluate the 

algorithm’s predictive ability can be used to 

analyze not only how well the system was able to 

correctly classify the given data, but those results 

provide important insight on the quality of the 

data itself (Alpaydin, 2014; Fawcett, 2006; 
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Hlaváč, 2016; Lara & Labrador, 2013; Powers, 

2011).  

In this article it’s exemplified the application 

of these metrics by using this system in the 

observation of the fencing practice, a sport highly 

characterized by its sudden, explosive speeds, 

wide range of position combinations and constant 

adjustment of the strategic, tactical and technical 

decisions to the surrounding context (Araújo, 

2006; Barth et al., 2007; Czajkowski, 2005; José, 

2018; Kimm & Thiel, 2015; Saucedo, 2000; 

Tarragó, et al., 2015; Torrents, 2005). Through a 

novel combination of the master’s (coach) 

qualitative assessment of the fencer’s efficiency 

and the data collected by an inertial sensor placed 

on the weapon hand, this Mixed-Method design 

approach (Anguera et al., 2018; Creswell & Plano 

Clark, 2011) allows the system to observe this 

highly variable sport and learn from the patterns 

hidden within the data what sets a good from a 

bad execution apart. Therefore the evaluation of 

its qualitative predictions, which were guided by 

the master’s observation criteria, reflect the 

behavioral patterns and cognitive biases and thus 

point out fallacies in the criteria items and the 

direction in which they should be fixed.  

 

METHOD 

The study of the effectiveness of a single 

fencer’s training movements while in context was 

performed on two technical-tactical actions, a 

simple attack (sixth engagement lunge with point 

contact on the chest) (figure 1A) and a compound 

one (sixth engagement with a counter-action of 

the master with disengagement to low line, with 

an octave engagement and a lunge with point 

contact on the chest) (figure 1B), both falling 

within the Federation International Escrime (FIE, 

2017) technical rules.  

 

 
Figure 1. (A) Finish of the first movement, (B) 

Finish of the second movement 

It follows a Nomothetic/Follow-

up/Multidimensional design, focusing on the 

plurality of the units (actions performed by the 

fencer), adding the differentiation generated by 

the qualification introduced by the master (good 

and bad), as observed through specific actions in 

the ad-hoc instrument constructed through field 

formats. The observation registers the actions 

over several sessions carried out over time, with 

a multidimensionality of response levels co-

occurring at the same time (Anguera et al., 2001, 

2011; Anguera & Mendo, 2013; Portell et al., 

2015).  

 
Figure 2. Convergent parallel design. Adapted from 

Creswell & Plano Clark, 2011 

 

Its focus is to combine the qualitative (QUAL) 

evaluations obtained from Observational 

Methodology performed by the master and the 

quantitative (QUAN) information obtained from 

the inertial sensors through a 

QUAL/QUAN/QUAL Mixed-Methods approach 

(Anguera et al., 2017), as seen in figure 2. 

This is achieved by training an Artificial 

Neural Network (ANN) on how to recognize the 

patterns that form the master’s decision process 

and thus provide us with valuable revelations that 

otherwise we would not normally be able to infer 

from the data (Hlaváč, 2016; Powers, 2011; 

Sammut & Webb, 2017). 

 

Participants 

Each exercise was performed 1000 and 700 

times respectively in 2 daily sessions, with a 15 

minute interval every 100 executions, by a single 

fencer. The inertial data was collected at a 100 Hz 

sample rate, while the qualitative evaluation of 

each execution was provided as a good/bad 

dichotomic variable, according to an ad-hoc 

observational instrument. The collected data (the 

sample) was conditioned to have a rate of ±60-

40% of good and bad executions respectively, in 
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order to provide proper representation of either 

category to the learning system. 

The fencer is among the top 20 of Youth 

(U19) World Ranking UIPM, with international 

level in Modern Pentathlon, while the master has 

10 years of experience as a coach, with 6 of 

international level, teaching athletes of world 

level. The sensor was placed on a non-intrusive 

location on top of the glove and the whole data 

collection took place during the normal training 

context. Therefore the procedures performed in 

this study did not require an ethics approval at 

the time of the research, as per by the UTAD 

Ethics Committee’s rules and guidelines. All 

subjects gave written informed consent in 

accordance with the Declaration of Helsinki. 

 

Measures 

Competition The data was collected by a 

university laboratory developed device placed on 

top of the glove of the weapon hand of the fencer 

(figure 3), which respects the FIE technical 

regulations (FIE, 2017), created specifically for 

the purpose of this research.  

 

 
Figure 3. Data collection prototype placed on the 

weapon hand 

 

The hardware is composed by an Arduino 

Nano and a single MPU-6050 inertial sensor, 

which contains an accelerometer and a gyroscope, 

set on a multi-sensor board GY-521 of 21.2 x 

16.4mm. The 3-axis accelerometer was set at a 

range of 16g, with a corresponding sensitivity 

factor of 2,048 LSB/g, calibration tolerance of 

±3% and cross-axis sensitivity of ±2%. The 3-

axis gyroscope was set at a range of 2000 °/s, with 

a corresponding sensitivity factor of 

16.4 LSB/(°/s), sensitivity tolerance of ±3% and 

cross-axis sensitivity of ±2% (Invensense, 2013). 

The system is powered by, and transfers data 

through, an USB link to the computer.  

The software is composed by a custom data 

collection application developed with C# in 

Unity3D (Unity®, 2017), while all the data 

processing was done in Matlab (Mathworks, 

2017). A complementary data collection system, 

used exclusively to register the fencing context 

and allow a visual confirmation of the performed 

actions, was a Sony P250 camera positioned at a 

distance to allow enough zoom to capture the 

whole image plane. The recordings were made in 

the natural light conditions of the room.  

 

Procedures 

 

 
Figure 4. Data processing pipeline 

 

Because each exercise is composed by several 

independent actions that follow the same set 

sequence in every observed execution, but with 

different durations and levels of expression, each 

signal was divided into 6 key segments through 

the use of Dynamic Time Warping (DTW). This 

is a time series analysis method that can find the 

optimal alignment between two given sequences, 

independently of any time distortions between 

them, by determining the warping path that 

provides us with the smallest possible distance 

between all the points of both time series 

(Bautista et al., 2016; Kivikunnas, 1998; 

Ratanamahatana & Keogh, 2004; Reyes et al., 

2011; Tang et al., 2018). 

As seen in figure 4, this step is followed by 

Feature Extraction, a dimensionality reduction 

method that removes the redundant information 

in the data by extracting all the relevant statistical 

and structural features that describe the 

underlying phenomena without any loss of 

important information (Alpaydin, 2014; Bishop, 

1995; Lara & Labrador, 2013; Rojas, 1996; 

Sammut & Webb, 2017). Each context requires 

different types of features, as there is no universal 

solution that portrays every single problem with 
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the same level of relevance. Likewise some only 

become relevant descriptors when paired with 

other features, while others become irrelevant 

under certain combinations (Guyon & Elisseeff, 

2006). There are multiple methods in this field of 

science regarding the feature selection process, 

but this is not the goal of this article. 

Taking into account this signal observes 

human activity through an IMU, which is prone 

to high oscillation and fluctuations (Erdas et al., 

2016; Lara & Labrador, 2013; Preece et al., 2009; 

Vital, 2015), and the resulting information will 

aid the ANN in its analysis of each execution, the 

combination of features that produced the best 

results this specific study were the median, root 

mean square, kurtosis, fast Fourier transform and 

principal component analysis. Which, combined 

with the duration of each segment, produced a 

total of 72 features for each of the two exercises.  

The next step in the data processing is the 

selection of the intelligent algorithm that will 

merge the QUAN and QUAL data through a 

Mixed Method approach in order to reach a 

QUAL output. Of the several branches of artificial 

intelligence, a machine learning approach works 

by acquiring new knowledge or understanding 

from its “past experiences” in order to form a 

“decision making” model that will give it the 

ability to predict future outcomes with increasing 

reliability (Alpaydin, 2014; Kim, 2017). 

Supervised learning specifically learning learns 

how to perform its task from not just the inherent 

patterns within the training data, but also from 

direct observation the desired output it must 

strive to achieve during its learning stage 

(Alpaydin, 2014; Bishop, 1995; Rojas, 1996; 

Taylor et al., 1994). Classification systems are a 

subgroup that takes the already known 

relationships (the classes) and predicts which of 

the discrete, or categorical, labels a new 

observation should fall into (Alpaydin, 2014; 

Taylor et al., 1994).  

The ANN is a versatile artificial intelligent 

algorithm that uses multiple layers of 

interconnected artificial neurons to receive, 

process and transmit the provided input (the 

quantitative signal) based on a weight bias (the 

qualitative evaluation) and activation function 

that determine if each neuron is allowed to pass 

the information to the next layer or not 

(Alpaydin, 2014; Bishop, 1995; Rojas, 1996). As 

the weight of each neuron is adjusted over time 

based on their activation states, the desired 

connections between the neurons are reinforced, 

while the undesirable ones are suppressed. This 

leads to the ANN to adapt to the provided 

information and thus learn the patterns that lead 

to the sorting into each category (Alpaydin, 2014; 

Bishop, 1995; Rojas, 1996).  

Depending on the quality of the selected 

training data in representing the problem the 

system is aiming to solve, in this case a wide 

variety of examples of both good and bad 

executions and their inherent variability, the 

model produced by the ANN may suffer from 

prediction errors that lead to Overfitting or 

Underfitting (Alpaydin, 2014; Fortmann-Roe, 

2012; Kim, 2017; Kuhn & Johnson, 2013). The 

confusion matrix (table 1) allows us to detect 

such occurrences by measuring the performance 

of a classification model through how well it 

predicted the correct outcomes (Fawcett, 2006; 

Hlaváč, 2016; Lara & Labrador, 2013; Powers, 

2011). In our case this also translates into 

insights on the master’s evaluation process. 

 

Table 1 

Confusion matrix 

 

Results 

Positive 

(P) 

Negative 

(N) 

Predicted 

Results 

Positive 
True Positive 

(TP) 

False Positive 

(FP) 

Negative 
False Negative 

(FN) 

True Negative 

(TN) 

 

Multiple metrics can be calculated from this 

matrix beyond just the accuracy, a highly 

misleading metric of the model’s performance 

when dealing with an unbalanced dataset if not 

paired up with others to provide a full insight 

(Hlaváč, 2016; Powers, 2011).  
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Table 2 

Performance analysis metrics extracted from the confusion matrix 

 Accuracy 
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False Omission 
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Matthews Correlation 

Coefficient 
 

 

As seen in table 2, the discoverability rate 

formulas focus on the classifier’s ability to 

identify the actual results, while the prediction 

rate ones measure the overall performance of the 

predictions themselves. The Matthews 

correlation coefficient measures the quality of the 

model, with the values ranging between -1 and 

+1, or complete disagreement between the 

variables and perfect prediction respectively 

(Fawcett, 2004, 2006; Powers, 2011; Sammut & 

Webb, 2017). 

 

RESULTS 

As it can be seen in table 3 our model has a 

prediction accuracy of 76.6% and 72.7% for the 

first and second exercise respectively, with a 

discoverability rate of 90.2% and 98.1% of the 

positive executions and 56.1% and 14.6% for the 

negative ones. However it also tends to 

misclassify good executions as bad 9.8% and 

1.9% of the time, and 43.9% and 85.4% for the 

negative ones.  

 

Table 3 

Results of the performance analysis for both exercises 

 1st Exercise 2nd Exercise 

ACC 0.766 0.727 

TPR 0.902 0.981 
TNR 0.561 0.146 
FNR 0.098 0.019 
FPR 0.439 0.854 

PPV 0.756 0.725 
NPV 0.792 0.775 
FDR 0.244 0.275 
FOR 0.208 0.225 

MCC 0.503 0.253 

 

But in terms of prediction rate, the model has 

a 75.6% and 72.5% probability of predicting a 

good execution correctly for the first and second 

exercise respectively, and a 79.2% and 77.5% for 

the bad ones. In terms of misclassifications it has 

a 24.4% and 26.5% chance of mistaking a 
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negative result for a positive one, and 20.8% and 

22.5% for opposite outcome. 

 

 
Figure 5. Comparison of the confusion matrix 

analysis of both exercises 

 

DISCUSSION 

For a qualitative focused tool, where high 

variability is to be expected, an ACC of ±80% is 

considered acceptable from an Observational 

Methodology perspective. Paired up with a high 

discovery rate of the positive results (TPR), 

which in a sport context is often the desired 

outcome, these metrics would point towards this 

model having a desirable performance. However 

the high FPR hints us towards some issues in the 

prediction of the good executions, especially in 

the second exercise. 

The model having such a disproportionate 

high tendency to detect the positive results, 

including misclassifying negative ones as such, 

reveals an imbalance in the data which in turn led 

to the ANN to produce an Underfitting model 

that suffers from high bias. That is, the data lacks 

enough complexity for the system to properly 

capture the underlying relationships within the 

data that dictate what forms a bad execution 

(Alpaydin, 2014; Bishop, 1995; Fortmann-Roe, 

2012). However the prediction rates have a 

similar performance when it comes to detecting 

either the good or the bad executions correctly, 

meaning the model has a low variance 

(Fortmann-Roe, 2012).  

Such behaviors are often the result of an 

insufficient data sample size or an imbalance in 

the percentage of both types of executions. The 

ANN require a high volume of data and, more 

importantly, a proper representation of all 

categories to detect the underlying patterns 

accurately (Alpaydin, 2014; Bishop, 1995), as 

shown by the FPR. But it is important to 

remember these qualifications that guided the 

learning process of both models are the result of 

a human-made, empirical evaluation that has a 

natural tendency to adjust over time to fit the 

athlete’s level, especially when perception is 

under variations brought by fatigue.  

The fact a traditional observation instrument 

is designed towards outlining all the items that 

form a correct execution also explains the 

behavior of both models. Besides fencing being a 

sport with an inherent high degree of variability 

in what is considered a correct execution, even 

when defined by strict qualitative criteria and the 

scope narrowed to a specific training exercise, 

with minimal external interaction brought by the 

opponent, any unfulfilled criteria within the full 

length of the execution automatically categorizes 

it as incorrectly performed.  

This can be a strong source of confusion for 

the system in understanding what are the minute 

characteristics that set both categories apart, if 

for example an execution is correct by all 

accounts but one. And it explains why both 

models have such a strong tendency to signal so 

many results as positive, especially when the 

complexity was increased and thus the level of 

scrutiny followed, in order to pay attention to the 

growing amount of details taking place in the 

same amount of very short time. When no 

additional information is provided on where the 

fencer erred, as how it normally occurs in a 

training session, this dichotomic evaluation does 

not provide sufficient detail and complexity for 

the system to detect the nuances that set the 

categories apart. 

However there is an external source of error 

within the evaluations that could not be 

accurately measured and thus removed that is 

likely playing a role in these results. Even if the 

study only focused the observation of the hand in 

context, information from other body segments 

was admitted to have been introduced. So, while 

the use of an inertial sensor can clearly capture 

valuable information from the hardest segment 

of the body to keep track of within fencing 

without the aid of a vision based approach, which 

is far more complex and demanding from a 

computational standpoint (Bradski, 1998; 

Diamant, 2008; Polak et al., 2015), this coupled 

0

0,5

1

ACC TPR TNR FNR FPR PPV NPV FDR FOR

1st Exercise 2nd Exercise
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with the metrics pointing to a lack of complexity 

means a lone sensor does not possess enough 

resolution to fully describe the context on its 

own.  

The reason only a single sensor was used was 

because of the notion that any motions 

performed by the body will be expressed in the 

suspended hand, thanks to the sensor’s high 

sensibility. How much impact the fencer’s 

compensatory actions have in dampening such 

readings was not part of our focus, but the 

addition of another sensor to the leg would most 

certainly increase the level of resolution of the 

observational instruments’ criteria (Malawski 

and Kwolek, 2016) and allow easier creation of 

new categories, based on the discrimination of 

the location of the incorrect action. 

As for the performance of the system itself, 

the prediction rates indicate both models have a 

fairly good probability of correctly predicting the 

class each execution belongs to, for both the 

positive and negative outcomes and in both 

exercises. That is, despite the data suffering from 

a high positive bias, or quantitively having a high 

selection of positive predictions, qualitatively 

both good and bad executions were fairly well 

distributed between both classes (Hlaváč, 2016; 

Powers, 2011; Sammut & Webb, 2017). 

Depending of the problem being solved often 

more relevance is given to one of either sides, 

although this only matters when the data is 

balanced (Fawcett, 2004, 2006). What this does 

show however is the data suffers from low 

variability and that this tool has potential in 

detecting the patterns that form the qualitative 

evaluations. 

As for the Matthews correlation coefficient, 

while it is hard to pinpoint which of the multiple 

causes are affecting its measurement of the 

quality of the model itself without further 

investigation and experimentation, we can say 

with some certainty the clear difference between 

both exercises is tied to their respective levels of 

complexity and the impact of how hard it is to 

completely divorce the actions of the different 

body segments. It also serves as an illustration at 

how complex it is, in such a nuanced sport, to 

translate such qualitative criteria occurring in 

context into a more “transparent” format. 

CONCLUSION 

Our study showed how an artificial 

intelligence based system can be applied in 

fencing and, through the use of a single inertial 

sensor and a mixed methods approach, can 

capture information often not visible to the 

naked eye. More importantly it also provides vital 

insight on the quality of the data in regard to the 

qualitative observations performed by the master 

in context, achieved through a confusion matrix 

and several performance analysis metrics of the 

intelligent system.  

Although the system has a 76.6% and 72.7% 

prediction accuracy rate, the performance 

analysis metrics revealed the data suffers from a 

high bias towards the positive results. That is, 

the data lacks enough complexity for the ANN to 

detect the patterns that distinguishes a good 

execution from a bad one, especially for the 

harder exercise. This points towards an 

imbalance in the representation of the bad 

executions in particular, as their definition is too 

broad in comparison to the good ones. This 

strongly suggests that a single sensor is unable to 

fully capture the context of the fencer’s weapon 

hand without taking the actions of the other key 

body segments into account.  

Further research is needed by adding new 

sources of information, adjusting the observation 

criteria, increasing the data sample and likely also 

incorporating evaluations performed by other 

masters and patterns performed by other fencers, 

as to detect different behavioral and decision 

patterns.  
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