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The aim of this experimental study was to evaluate acute responses to oxidative stress (OS) after a single session of two HIIT 

protocols. 24 Wistar rats were divided into three groups (n= 8): sedentary control (SC), HIIT with a 7-minute volume (LW) and HIIT 

with 14-min (HW). After the protocol, blood was collected for the measurement of uric acid (UA), and the liver and the gastrocnemius 

muscle were collected for OS assessment by measuring malondialdehyde (MDA) and total antioxidant capacity (FRAP). The LW 

and HW groups showed a reduction in hepatic MDA (51.9 and 29.9%; p< 0.05) compared to SC. However, the muscle of the HW 

group increased the MDA (12.6%; p< 0.05) compared to SC. As for FRAP, LW and HW reduced values (78.3 and 75.3%; p< 0.05) 

compared to SC, respectively. UA in the LW group was higher when compared to SC (64.7%; p< 0.05), HW group was similar to 

SC (p> 0.05). Among the different HIIT protocols, the LW group showed an increase in UA compared to the HW group (44%; p< 

0.05). Compared to SC, the LW and HW groups did not promote acute OS in the liver tissue. However, HW caused OS in muscle 

tissue after a single exercise session.
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INTRODUCTION
The search for a healthy lifestyle, as well as the adoption 

of healthy habits, contribute significantly to improving the 
quality of life (Niven, Laird, Saunders & Phillips, 2021). In 
this sense, several exercise modalities arise intending to opti-
mize physiological aspects. For example, HIIT, High-Intensity 
Interval Training, is characterized by brief and repeated epi-
sodes of intense activity followed by short periods of passive 
or active rest with low-intensity exercises (Torma et al., 2019). 

Due to the possibility of adjusting certain variables, such as 
intensity and duration of effort and rest, active or passive rest, 
number and duration of sets, duration and type of recovery 
between sets, different HIIT protocols can be triggered (Alves, 
Salermo, Panissa, Franchini & Takito, 2017). These interval train-
ing models promote physiological adaptations very similar to 
those found in traditional aerobic exercise. Among these adjust-
ments, some authors reported an increase in the generation of new 

mitochondria and modulation of oxidative enzymes, however in 
a much smaller period of training volume (MacInnis & Gibala, 
2017; Torma et al., 2019; Silva, Galliano, & Del Vecchio, 2020).

As a high-intensity exercise, HIIT requires a high metabolic 
demand (Ahlert, Matzenbacher, Albarello & Halmenschlager, 
2019; Souza et al., 2020), which can result in an increase 
in reactive oxygen species, and consequently, resulting in 
increased oxidative stress (OS) in various organs and tissues 
(Powers, Talbert, & Adhihetty, 2011). This is defined as the 
imbalance between the production of reactive oxygen spe-
cies (ROS) and the intracellular antioxidant defense capac-
ity (Zhang et al., 2019). Despite the studies that analyzed 
HITT and its effects on the body, its role on the oxidative 
responses induced by this modality is still scarce. Thus, this 
study aimed to evaluate the effects of an acute session of two 
HIIT protocols on oxidative parameters in rats. We hypoth-
esize that the HW protocol will result in higher OS.
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METHODS

Animals
Twenty-four male Wistar rats, with an initial age of 60 

days (250 to 300 g), from the Sectorial Animal Facility of 
Intracellular Signaling Research Nucleus (NUPESIN) of the 
Universidade Federal de Sergipe (UFS) were used. The ani-
mals were divided into three groups with n= 8 each: animals 
that did not perform high-intensity interval exercise (SC); 
animals that performed high-intensity interval exercise with 
low work volume (LW) and animals that performed high-in-
tensity interval exercise with high work volume between 
swims (HW). All experimental groups were kept in collec-
tive cages in groups of 04 rodents and under environmen-
tal conditions of temperature from 21 to 24°C and 12-hour 
light-dark cycle with free access to filtered water and specific 
food for rodents (Purina, Brazil). The procedures that were 
used in this study were previously approved by the Ethics 
Committee in Animal Research of Universidade Federal de 
Sergipe (CEUA/UFS), under the protocol (15/2017), and 
were in accordance with the Guidelines of the Brazilian 
College of Experiences with Animals (COBEA).

Procedures

Acute session protocol
Previously, the animals underwent an adaptation to the 

liquid medium, carried out for 15 days, following the pro-
tocol adapted from Contarteze, Manchado, Gobatto and 
Mello, (2007). In an 80 cm deep × 80 cm in diameter cylin-
drical tank and a water temperature of 25± 1°C with lead 
overload (small cotton fabric bags and Velcro) placed near 
the ventral region of each rodent, below the neck region dis-
tributed distally to the thoracic region, with different levels 
of water, load, intensity and volume.

After adaptation, the animals were submitted to two acute 
interval exercise protocols of high-intensity swimming, derived 
from the protocol by Terada et al. (2021). The LW group did 
a single session with 14 swimming periods lasting 20 sec-
onds and 10-second intervals between each period, totaling 
a volume of 07 minutes. The HW performed a single session 
with 14 swimming periods lasting 35 seconds and intervals 
of 25 seconds between each period, totaling a volume of 14 
minutes. In both HIIT cases, a load of 14% of body weight 
was used, with a depth of 60 cm.

Collection of biological materials
Immediately after the acute sessions, the animals were 

anesthetized with ketamine/xylazine (75 mg/kg + 10 mg/kg 

i.p) and blood (approximately 5 mL) was collected through 
cardiac puncture and the animals were euthanized by bleeding 
preceded by anesthesia. Immediately the collected blood was 
centrifuged at 800 g for 15 minutes at 4°C. The supernatant 
was then stored at -80°C. Part of the liver (1g) and gastroc-
nemius skeletal muscle (1 g) were removed and then washed 
3 times with a 1.15% solution of KCL (Vetec, LTDA, Rio 
de Janeiro, Brazil), dried and weighed. After the liver and 
muscle were homogenized, each gram of tissue was mixed 
with 5 mL of KCl, 10 μL of phenylmethylsulfonyl fluoride 
(PMSF, 100 mmol, Sigma-Aldrich, Steinheim, Germany) 
and 15 μL of 10% Triton. The homogenates were then cen-
trifuged at 3,000 g for 10 minutes at 4°C. The supernatants 
were stored at -80°C until further analysis of OS and tissue 
damage markers.

Determination of OS biomarkers
The MDA measurements were performed according to 

the method described by Ohkawa, Ohishi and Yagi (1979). 
Quantification of MDA: 100 μL of the liver and muscle tissue 
homogenates were incubated in Eppendorf with 350 μL of 
20% acetic acid (pH 3.5) and 600 μL of thiobarbituric acid 
(TBA, 0.36%) for 1 hour at 85°C. Then, the Eppendorf were 
cooled on ice and centrifuged at 1,500 RPM for 5 minutes. 
Absorbance reading was performed at 532 nm. The molar 
extinction coefficient used was 1.54 × 105 M-1 cm-1 and 
the result of TBARs in nmol of MDA/g of tissue, where 
TBARS stands for substances reactive to thiobarbituric acid.

Determination of antioxidant capacity
Using the FRAP (Ferric Reducing Ability of Plasma) 

technique, a 9 μL aliquot of liver plasma was pipetted into 
a microplate, where 27 μL of distilled water and 270 μL of 
FRAP reagent were added. The plate was incubated at 37°C 
for 30 minutes and reading was performed at 595 nm. Ferrous 
sulfate (FeSO 4) was used as a standard and the results were 
expressed in μM of equivalents of ferrous sulfate produced.

To measure uric acid (enzymatic UV uricase-peroxidase), 
the commercial kit (Labtest, Santa Lagoa, Minas Gerais, 
Brazil) was used. Plasma (20 μL) from each animal was 
homogenized in specific reagents at 37± 0.2°C, and read-
ings were taken using a spectrophotometer (Biospectrum 
Model SP-22 UV / Visible, Minas Gerais, Brazil) at one 
wavelength of 540 nm.

Statistical analysis
Data normality was tested by the Shapiro-Wilk test. Then, 

the Anova One Way with Bonferrini post-hoc was used to 
analyze the data of OS markers and antioxidant capacity. We 
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adopted the significance level p< 0.05. All data were analyzed 
using the GraphPad Prism statistical program version 7.0 
(GraphPad Software, San Diego, CA, USA).

RESULTS
The tissue oxidative stress lipid oxidation biomarker 

(Figure 1A), it shows that the protocol of single sessions 
of high-intensity exercise (HIIT) with low work volume 
(LW) was able to decrease (600.2± 89.9 vs 288.9± 15.2; 
-51.9%; p= 0.0001) the values of liver TBARs in rats after 
exercise in relation to the sedentary control group (SC). 
Likewise, we observed that the HIIT protocol with high 
workload HW also reduced (600.2± 89.9 vs 421.0± 110.7; 
-29.9%; p= 0.0058) the values of liver TBARs in rats after 
exercise compared to the sedentary control group (SC). 
However, when comparing the protocols, it was o observed 
that there was a significantly higher decrease (421.0± 110.7 
vs 288.9± 15.2; 22%; p= 0.0435) in the LW protocol com-
pared to the HW. 

In the skeletal muscle tissue (Figure 1B), the LW proto-
col did not change tissue TBAR levels compared to the SC 
group (117.1± 13.7 vs 107.9± 5.8; -7.9%; p= 0.21). On the 
contrary, the HW protocol generated an increase in TBARs 
(117.1± 13.7 vs 131.8± 4.0; 12.6%; p= 0.012) in the tissue 
compared to the SC group. As seen above, the effect between 
protocols was 22.2% greater in HW in increasing muscle tis-
sue TBARs than in LW.

Regarding the antioxidant capacity of the rat liver tissue 
measured using the iron reduction method (FRAP) (Figure 
2A), suffered a strong alteration from the applied HIIT. We 
identified that the LW and HW protocols reduced the FRAP 
levels (1,210± 320.1 vs 263.2± 109.6; -78.3% and 1,210± 
320.1 vs 299.4± 64.0; -75.3%; p= 0.0002) when compared 
to the SC group, respectively. On the other hand, we did 
not observe any difference in the tissue´s antioxidant capac-
ity between LW and HW groups (263.2± 109.6 vs 299.4± 
64.0; p> 0.9999), suggesting that, regardless of the protocol, 
HIIT causes depletion in the liver tissue’s antioxidant stores. 

When we analyzed the antioxidant marker uric acid (UA) 
in blood plasma (Figure 2B), we identified that HIIT in the 
LW group promoted a significant increase in the UA blood 
concentration compared to the SC group (4.6± 1.1 vs 7.6± 
1.5; 64, 65%; p= 0.01). On the other hand, UA concentra-
tions in the HW group were similar to SC (4.6± 1.1 vs 4.3± 
0.6; p> 0.9999). But when the effects between protocols were 
compared, the LW group had a significant increase in blood 
UA compared to the HW (44%; p= 0.0046).

DISCUSSION
The present study evaluated the acute effects of two 

high-intensity interval exercise protocols on markers of OS 
in rats. Based on the results, it can be inferred that a single 
session of high volume HIIT promoted oxidative damage 
related to lipid peroxidation in the liver of Wistar rats. In 

SC: sedentary control group; LW: animals that exercised with a low workload — 7 min; HW: animals that exercised with a high 
workload — 14 min; *values are presented as mean± standard deviation of the mean and expressed in nmol MDA/mg tissue. 
Samples were collected immediately after the last swimming period of the exercise session. Different letters in the figure represent 
a statistically significant difference at p< 0.05 between groups.

Figure 1. Effect of the high-intensity interval exercise session on oxidative stress biomarker on lipid damage in (A) liver tissue 
and (B) gastrocnemic skeletal muscle of rats*. 
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addition, both high and low volume protocols reduced the 
antioxidant activity marker in plasma FRAP. MDA is the 
final product of lipid peroxidation, being used as a marker 
for measuring OS (Kawamura & Muraoka, 2018). 

Oxidative damage to membrane lipids occurs due to an 
increased production of free radicals, such as reactive oxygen 
species (ROS) (Valko et al., 2007). During muscle contrac-
tion, ROS are produced mainly in the mitochondria, and by 
the activity of the enzyme xanthine oxidase and nicotinamide 
adenine dinucleotide phosphate (Nemes et al., 2018), and 
have regulatory functions in a variety of intracellular pro-
cesses such as proliferation, differentiation, immune response, 
signaling, energy metabolism, gene expression and exercise 
adaptation (Schieber & Chandel, 2014; Morales-Alamo & 
Calbet, 2016).

However, the exacerbated increase in its production is 
associated with deleterious effects related to oxidative stress 
such as overtraining (Lewis et al., 2018). This dichotomy 
between the physiological effects caused by ROS and con-
sequent oxidative stress seems to be associated with the 
amount of reactive oxygen and nitrogen species that is pro-
duced by intracellular processes, which may be a dose-de-
pendent effect on the stimulus that causes it (Nikolaidis & 
Margaritelis, 2018).

In the present study, a decrease in the concentration of 
MDA was observed in the exercised groups compared to the 
control group, demonstrating that an acute session of HIIT 
did not provide significant oxidative damage, similarly to 
the study carried out by Bloomer and Goldfarb (2004). In 
addition, Ramos-Filho et al. (2015). Using the same exercise 
protocol, showed no significant difference immediately after 

exercise in the concentration of MDA in the gastrocnemius 
muscle of rats. The gastrocnemius muscle is formed by dif-
ferent types of muscle fibers, both of slow and fast contrac-
tion, which are arranged in different ways along the muscle 
(Ramos-Filho et al., 2015). It is known that high-intensity 
interval exercise requires greater activity on the fast-twitch 
type II contraction fibers (Holloway, Bloemberg, Silva, 
Quadrilatero & Spriet, 2015).

During swimming using the HIIT protocol, the gastroc-
nemius muscle is less recruited when compared to the tibialis 
anterior muscle, which contains a higher percentage of fast-
twitch fibers (Nikolovski, Faulkner, Palmer & Fournier, 1996). 
Likewise, the less active muscle may represent a decrease in 
the oxidation of energy substrates during physical exercise 
(Ørtenblad, Westerblad, & Nielsen, 2013; Gejl et al., 2017). 
Therefore, it can be hypothesized that, in the models evalu-
ated in this study, there may have been less activity of energy 
pathways and intracellular mechanisms responsible to pro-
duce reactive species. Therefore, it was unable to generate 
oxidative damage in the gastrocnemius muscle, due to the 
characteristics of the composition of its fibers.

Confirming this hypothesis, Ramos-Filho et al. (2015), 
found that the tibialis anterior muscle produces hydrogen 
peroxide (H2O2) in greater amounts, compared to the gas-
trocnemius, using the same HIIT protocol presented in our 
study. In more recent findings, researchers observed that the 
production of H2O2 depends on the characteristics of the 
exercise performed. HIIT was not able to increase the gen-
eration of H2O2 through mitochondrial complexes I and II 
in the gastrocnemius of rats, while continuous exercise pre-
sented a different scenario (Martins et al., 2018).

SC: sedentary control group; LW: animals that exercised with a low workload — 7 min; HW: animals that exercised with a high 
workload — 14 min. Values are presented as mean± standard deviation of the mean FRAP expressed in (A) μmol FeSO₄/g tissue 
and (B) Uric acid mg/dL. Samples were collected immediately after the last swimming period of the exercise session. Different 
letters in the Figure represent a statistically significant difference at p< 0.05 between groups.

Figure 2. (A) Hepatic and (B) blood antioxidant capacity of rats after a high-intensity interval exercise session*. 
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Adaptations to the HIIT training protocol are shown 
to be specific in some tissues such as skeletal muscle when 
compared to the continuous exercise protocol, which demon-
strates that the oxidative response may vary depending 
on the tissue analyzed (Groussard et al., 2019). Thus, our 
results did not show a difference in the oxidative response 
in different tissues such as skeletal muscle and liver. In 
another tissue territory, the liver is the organ responsible 
for the control of glycemic homeostasis during physical 
exercise Gonzalez, Fuchs, Betts and Van Loon (2016), 
when liver cells mobilize their glycogen stores, thus pro-
viding the energy substrate needed to perform the muscle 
contraction (Trefts, Williams, & Wasserman, 2015). The 
liver is the organ responsible for the synthesis of antioxi-
dant molecules, the main one being glutathione (Kalinina, 
Chernov, & Novichkova, 2014). The HIIT training pro-
tocol demonstrates an increase in the concentrations of 
antioxidant enzymes produced by the liver (Delwing-de 
Lima et al., 2018). This adaptation to training occurs due 
to the attack of ROS during physical exercise sessions 
(Powers et al., 2011).

A recent study investigated the effect of a single ses-
sion of HIIT In rats, using a treadmill, on oxidative dam-
age Melo et al. (2019), showing no significant difference in 
post-exercise MDA levels, although it showed improvement 
in antioxidant capacity in 24 h. However, due to the lack 
of data on exercise induced ROS quantification, it is not 
possible to determine whether there is a threshold of their 
production that results in oxidative damage, as well as the 
period in which the attack on biomolecules occurs, as our 
study portrays the moment right after the end of the exer-
cise. Pimenta et al. (2015), observed that swimming using 
HIIT as a training protocol is able to improve the antiox-
idant defense in ovariectomized rats and hyperlipidemic 
diets, demonstrating the beneficial effect of reducing MDA 
concentrations in the gastrocnemius. 

CONCLUSIONS
In conclusion and given the above, the HW protocol 

reduced the antioxidant capacity in the plasma, while increas-
ing the concentration of MDA in the liver.
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