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In January 2013, the KDIGO published the Clinical 
Practice Guideline for the Evaluation and Manage-
ment of Chronic Kidney Disease (CKD) where was 
stated “…We recommend that all people with CKD 
be considered at increased risk for cardiovascular 
disease …” with a (1A) strength of recommendation1. 
The CKD definition it is now based in two main 
determinants: a low estimated glomerular filtration 
rate (eGFR) and the level of albuminuria measured 
as albumin to creatinine ratio (ACR) in an untimed 
(spot) urine sample. Each of these determinants 
can be found together or isolated for the CKD 
definition2-4.

The prevalence of eGFR ≤ 60 ml/min/1.73m2 in 
the general population is ten times that of the 
patients on dialysis or transplanted5. The reason 
for this difference is mainly due to death of the 
patients before arriving to the late stages of CKD6. 
This absolute mortality risk is independent of the 
nature of the cause of the renal disease. This obser-
vation links, somehow, the CKD “environment” to 

the mortality risk. This risk for cardiovascular disease 
(CVD) and death was definitely established in the 
meta-analysis by the CKD Prognosis Consortium that 
demonstrated a strong association of eGFR ≤ 60 ml/
min/1.73m2 with subsequent risk of cardiovascular 
and all-cause mortality in the general population 
and in populations with previous increased risk for 
CVD2-4. While for the eGFR the threshold level below 
60 ml/min/1.73m2 is for a long time assumed as a 
clear mortality risk factor, the threshold for albumin 
is far from being clear. In several clinical settings 
as in diabetes or hypertension the decrease of eGFR 
is frequently preceded by the appearance of albu-
minuria and, on the other hand, not infrequently 
the decline in eGFR is not followed by albuminuria. 
This observation gives an independent weight to 
both variables either as risk factor for CV and all-
cause mortality7.

For the definition of CKD, the KDIGO team chose 
a threshold for urinary albumin equivalent to an ACR 
in a random untimed urine sample of ≥ 30 mg/g or 
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≥ 3 mg/mmol. The rationale for this threshold seems 
weak once it is mainly based in the observation that 
that value “… is greater than 3 times the normal 
value in young adult men and women of approxi-
mately 10 mg/g or 1 mg/mmol)…”. If it is assumed 
that the normal value is < 10 mg/g, I think it is 
arbitrary to multiply by 3 the normal range in the 
definition of CKD.

It can be understood that, for the case of the CKD 
definition, an ACR value of 30 mg/g can be accepted, 
since a lower value would cause an even greater 
and alarming prevalence of CKD. But for the relevance 
of albuminuria as a mortality risk factor, beyond CKD 
definition, the threshold must be lower8.

Once again, the meta-analysis by the CKD Prog-
nosis Consortium3 showed a sustained and continu-
ous increase in CV and all cause mortality for ACR 
levels as low as 5 mg/g. This observation clearly 
points to ACR as a sensitive marker of mortality risk 
assessment at values far below the common alerts 
that we have been taught.

  WHAT IS THE LINK BETWEEN ALL 
BODY TISSUES?

Since the early 1980’s, the endothelial cells (EC) 
lining the vascular tree have gained a paramount 
importance in the understanding of the homeostatic 
language between the intra and extra-vascular ter-
ritories and between local and systemic interactions. 
An enormous amount of EC functions emerged from 
animal and clinical investigation9. Vascular endothe-
lial cells line the entire circulatory system, from the 
heart to the smallest capillaries. The recent knowl-
edge that the endocardium and systemic ECs share 
the same embryogenic lineage permits the conceptual 
linkage between cardiac and systemic endothelial 
function and dysfunction10. Among these functions 
are fluid and solute filtration, blood vessel tone and 
blood flow regulation, haemostasis with anti-throm-
botic activity, anti-adhesion and neutrophil recruit-
ment, and hormone trafficking regulation.

The vital role of the endothelium is achieved 
through the presence of membrane-bound receptors 
for numerous proteins, lipid-transporting particles, 
metabolites, and hormones, as well as through 

specific junctional proteins and receptors that govern 
cell-cell and cell-matrix interactions. Intra-vascular 
perturbations that disrupt ECs quiescence that may 
occur at sites of inflammation or high hydrodynamic 
shear stress induce a prothrombotic and antifibrino-
lytic microenvironment9. The endothelium, as a 
whole, can be viewed as an organ, with a 350 m2 
surface area and only a small mass of 110 g11. The 
surface of the ECs distribution throughout the vas-
cular bed accompanies the distribution of all the 
vessel types, with a 3000:1 proportion from the capil-
laries and postcapillary venules to the larger arter-
ies12. These territories (the so-called exchange seg-
ment of the vascular tree), control the exchange of 
molecules between the blood plasma and the inter-
stitial fluid, while maintaining blood and tissue 
homeostasis. All capillaries are lined with endothelial 
cells supported by a basement membrane. However, 
they differ in the details of this basic structure, as 
well as in the type of supporting cell they possess. 
The consequent multilayer arrangement of capillary 
walls ensures that they create a multicomponent and 
composite exchange barrier13.

  WHICH COMPONENT OF 
THE ENDOTHELIAL CELL IS 
THE VASCULAR GATEKEEPER?

In 1966, with the development of ruthenium red, 
a cationic reagent for electron microscopy, it was for 
the first time detected a fine cover of the endocapil-
lary layer14,15. This EC surface cover was named 
glycocalyx (sweet coat), mainly composed of proteo-
glycans and glycoproteins. However, until recently, 
relatively little attention was paid to this endothelial 
glycocalyx layer (EGL)(16). Searching, since 1990, by 
decade in the PubMed for endothelium and glicoca-
lyx, the average number of publications was between 
31000 and 48000 for the former and between 480 
and 510 for the latter.

The EGL is composed mainly of glycoproteins, 
sulphated proteoglycans, hyaluronic acid, sialic acids, 
and plasma proteins. Heparan sulphate is the most 
abundant proteoglycan in the EGL (± 50–90%) and 
generally co-expresses with the second most abun-
dant proteoglycan, chondroitin sulphate, in a 4:1 
ratio. Additional studies indicate that the transmem-
brane protein syndecan-4, a member of the heparane 
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sulphate family of proteoglycans, is linked to the 
actin cytoskeleton through actin-binding proteins 
providing the direct association between the EGL 
and the underlying cytoskeleton for mechanotrans-
duction17,18. The EGL is a strong anionic mesh 
anchored to the EC surface were multiple soluble 
molecules are impregnated like superoxide dismutase 
or antithrombin III. This gel type lining is a dynamic 
interface between blood and EC. The EGL covers all 
EC along the vascular bed and its thickness and 
integrity are of major importance for the contact of 
the blood components and the EC surface receptors 
and adhesion molecules. The thickness is higher in 
large vessels than in capillaries. The EGL is a very 
fragile structure permanently shedding and regenerat-
ing easily affected by enzymatic or mechanical shear 
stress18. The EGL integrity is of pivotal importance 
in promoting leukocyte rolling and reducing adhe-
sion, in preventing albumin leak and keeping the 
capillary permeability, in maintaining local antithrom-
botic homeostasis, in maintaining capillary integrity 
against oxidative stress. It is now clear that the EGL 
is determinant as a gatekeeper of the vascular tree 
and especially at the level of the microcirculation.

  ALBUMINURIA AS THE MARKER 
OF GLYCOCALYX INTEGRITY

At the microcirculation, capillaries and postcapil-
lary venules, the endothelium may be described as 
continuous, fenestrated or discontinuous. In continu-
ous endothelia, one cell directly contacts the next 
at intercellular junctions. Endothelia may also possess 
fenestrations, with transcellular cytoplasmic holes, 
which may or may not contain diaphragms. The 
mature glomerular endothelium is characterized by 
fenestrations without diaphragms but covered by 
glycocalyx19,20. In discontinuous endothelium there 
are significant gaps between adjacent cells where 
basement membrane may also be absent. For several 
years, the importance of glomerular glycocalyx was 
evident21. But, until recently, papers concerning pro-
teinuria mechanisms and albuminuria did not address 
the importance of the glycocalyx as the fist and 
eventually most important anionic barrier for the 
glomerular leak of albumin22,23.

With this knowledge, it is intuitive to admit that 
the loss or malfunction of the glycocalyx delicate 

structure can follow the “small” amounts of albu-
minuria now known to be associated with endo-
thelial disease. While the higher amounts of albu-
minuria can easily be associated with the classical 
glomerular pathology, the lesion of the glomerular 
glycocalyx, as part of the systemic endothelial gly-
cocalyx layer (EGL) lesion, is far more difficult to 
prove and study.

Recently new insights arrive from clinical and 
experimental investigation associating glycocalyx 
lesion to some systemic disease states like diabetes 
I and II24,25, capillary leak in sepsis26,27, ischaemia 
and reperfusion28,29, atherosclerosis30,31 and CKD32.

Vascular oxidative stress is an important factor 
leading to endothelial dysfunction and has been 
identified as a significant contributor to the progres-
sion of atherosclerosis and other vascular complica-
tions of diabetes and CKD. Excessive generation of 
reactive oxidative species (ROS) ROS disrupt EGL 
barrier properties33.

One of the known causes of vascular stress is 
water and sodium overload. It was demonstrated 
that sodium overload transforms the endothelial 
cells from a sodium release into a sodium absorb-
ing state by disrupting glycocalyx integrity. The 
specific aldosterone antagonist, spironolactone, 
prevented these changes. These observations led 
to the conclusion that the endothelial glycocalyx 
serves as an effective buffer barrier for sodium and 
damaged EGL facilitates sodium entry into the 
endothelial cells. This could explain endothelial 
dysfunction and arterial hypertension observed in 
sodium abuse34 and the benefit of aldosterone 
antagonists in cardiovascular risk reduction. In 
recent years a great deal of attention has been 
directed to the endothelial glycocalyx layer and 
most of the new knowledge reinforces the main 
importance of this fragile structure in keeping micro-
vascular and organ integrity.

Low levels of albuminuria can represent, in a near 
future, a simple and sensitive method for monitoring 
EGL in vivo and, probably, when used as a time 
sequential variable, also an important and clinically 
relevant data to monitor and evaluate individual 
cardiovascular risk.
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