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Abstract 

Corrosion of steel in concrete is one of the major causes of structure degradation, 

requiring expensive maintenance. The using of hot dip galvanized steel (HDGS) has 

been recognized as one effective measure to increase the service life of reinforced 

concrete structures in marine environmental. However, HDGS corrodes in contact with 

high alkaline environment of fresh concrete. Although this initial corrosion process 

allows the formation of a protecting layer barrier, the corrosion that occurs initially is 

harmful and chromate conversion layers are usually used to prevent it.  

Due to toxicity of Cr(VI), these kinds of pre-treatments have been forbidden and hybrid 

coatings have been proposed as alternatives [1-3]. To evaluate the performance of these 

coatings, beyond the laboratory characterization, in situ tests in real conditions should 

be performed. 

An electrochemical system to measure the macrocell current density (igal) was designed 

to evaluate the degradation of HDGS coated samples with different organic-inorganic 

hybrid films, embedded in mortar during 70 days, using an automatic data acquisition 

system. 

This system revealed to be feasible and highly sensitive to coatings degradation. Also, 

allow distinguishing different hybrid coatings with different thicknesses. 
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Introduction 

To minimize the risk of corrosion of reinforced concrete structures (RCS) it 

should be ensured that the concrete covering the metallic reinforcement parts is 

of an adequate thickness and possesses a high quality, with a proper mixing ratio, 

good compaction and curing. However, the physical barrier of protection 
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provided by the concrete cover is not perfect. Due to the porous concrete 

structure, resulting from imperfections of concreting and curing processes, the 

diffusion/transport of aggressive species towards the interface steel/concrete is 

enabled. The conjugation of these factors may cause rupture of the film 

passivation and initiate rusting of steel originating failure in reinforced concrete 

structures. However, premature failure in RCS by reinforcement corrosion in 

aggressive environments, especially structures exposed to marine environments, 

might be mitigated if the reinforcing steel is hot dip galvanized [4-7]. The zinc 

coating on rebars embedded in concrete acts as a physical barrier avoiding direct 

contact between the coated reinforcing steel and the aggressive environment. 

Deposited zinc acts as sacrificial anode protecting the steel against corrosion and 

the zinc corrosion products provide a sealing effect on zinc coating due to 

discontinuities [6]. Moreover, galvanized reinforcing steel can withstand 

exposure to chloride ion concentrations several times higher (at least 4 to 5 

times) than the chloride level, that causes corrosion in steel reinforcement [8].  

While steel in concrete typically depassivates at a pH below 11.5, galvanized 

reinforcement can remain passivated at a lower pH, thereby offering additional 

substantial protection against the effects of concrete carbonation [8]. The 

combination of these factors: carbonation resistance and chloride tolerance are 

commonly accepted as the basis for superior performance of galvanized 

reinforcement compared to steel reinforcement. In addition, zinc corrosion 

products occupy a smaller volume than those produced from iron causing slight 

or no disruption in the surrounding concrete. Yeomans [8] also confirmed that 

the zinc corrosion products are powdery and non-adherent making them capable 

of migrating from the surface of the galvanized reinforcement into the concrete 

matrix, reducing the likelihood of zinc corrosion-induced spalling of the 

concrete.  

The cathodic reaction from water hydrolysis with hydrogen evolution, in contact 

with high alkaline environments, such as concrete, takes place, producing a 

continuous dissolution of the metal until the solution becomes oversaturated by 

these ions that precipitate as Zn(OH)2 or ZnO [6]. In order to avoid those 

reactions the cement must contains at least 100 ppm of chromates in the final 

concrete mix or the hot-dip galvanized bars must be previously passivated with a 

chromate conversion layer to minimize the evolution of hydrogen during the 

reaction between zinc and fresh concrete [9-15]. 

The high corrosion resistance offered by the use of chromate films is endorsed to 

the presence of Cr
6+

 and Cr
3+

. Chromate and similar hexavalent chromium 

compounds are among the most common substances used as inhibitors and are 

commonly incorporated in anticorrosive pre-treatments of a wide range of metals 

and alloys, such as steels, aluminium alloys, copper, lead and others. The original 

reason behind the use of chromate treatments on galvanized steel is to avoid the 

formation of wet storage stain during the first six weeks after galvanizing, in 

particular to reduce the formation of excessive amounts of zinc oxide and zinc 

hydroxide during that period, and reduce the consequent release of hydrogen gas 

[8]. The reaction of zinc with the concrete ceases in a few days and gives just 
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sufficient corrosion products to ensure a strong and reliable bond to the concrete 

when fully hardened. 

Although the chromium-based compounds improve the corrosion resistance of 

zinc and minimize the hydrogen evolution, their application is heavily regulated 

by most environmental legislation due to their carcinogenic effects. Research 

efforts are being made to replace chromates and produce new ecological 

compounds and processes aiming good corrosion resistance, adhesion, and 

fatigue resistance, reliability and quality control performances. Besides some 

commercial available products, research developments involve a better 

understanding of these coatings performance beyond the laboratory scale, so in 

situ tests (in real RCS conditions) are currently performed and feasible systems 

being developed.  

As well documented by several authors [16-23] electrochemical techniques (i.e. 

half-cell potential measurements, polarization resistance, potentiostatic and 

galvanostatic transients perturbations, electrochemical impedance spectroscopy, 

noise analysis, multielectrode systems, etc.) offer several advantages for 

reinforcement corrosion monitoring. Schiessl and Raupach in 1992 [24] 

developed a sensor to be implemented inside concrete during the construction. 

The developed sensor device involves the paring of a non-oxidable metal 

electrode, usually stainless steel, with the steel rebars used to build the 

construction structure, allowing measuring the galvanic current created when 

construction steel depassivates by action of the aggressive agents (local 

acidification, carbonation, ingress of chloride ions and/or depletion of O2). 

Installing these sensors on critical points of the concrete structure together with 

an appropriate data acquisition and communication systems is possible a real-

time RCS monitoring. Detecting or predicting the instant wherein the 

construction steel depassivates [26-27], makes possible to plan the necessary 

maintenance interventions in order to minimize the involved costs.  

In the present work is described an electrochemical system [25] based on 

Schiessl and Raupach studies [24]. The main purpose of the paper is to evaluate 

the response of the designed electrochemical system when coated with different 

OIH and not to evaluate the barrier properties of the coatings. 

This system was tested under laboratory conditions to assess the system response 

to the degradation of HDGS coated with different OIH films embedded in 

mortar. The developed cells allow assessing and monitoring the behavior of 

HDGS protective coatings with time when in contact with mortar. The results 

show that the designed system implemented is suitable to evaluate the in situ 

degradation of HDGS coated with different OIH films embedded in concrete.  

 

 

Experimental 

Reagents 
The OIH gel matrices were prepared following a well-established methodology 

described elsewhere [28-30]. Two sets of four different structural types of 

ureasilicate OIH gel matrices were prepared by a reaction between the isocyanate 

group of the derived siloxane (ICPTES) with four different di-amino 
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functionalized polyether (Jeffamine® D-400, Jeffamine® ED-600, ED-900 and 

ED-2000, hereafter generically referred as Jeffamines) with different molecular 

weights, with and without incorporated Cr(III) ions, obtained by adding the 

correspondent salt aqueous solutions with a concentration of 0.01M. All the used 

Jeffamines and the functionalized siloxane (3-isocyanate propyltriethoxysilane) 

were stored protected from light and used as supplied. Ethanol (EtOH, absolute 

98 %, Riedel-de-Haën), citric acid monohydrate (Merck), and chromium (III) 

nitrate nanohydrate (Aldrich) were also used as received. Ultra-pure water 

(0.055-0.060 µS/cm) obtained from a Purelab Ultra System (Elga) was used. 

HDGS metal plates commercially available were used, with 5.0x1.0x0.1 (in cm) 

and with a Zn average thickness of 16 µm on both sides.  

 

Preparation of HGDS coated samples 
HDGS coating samples were prepared by dipping HDGS metal plates, used as 

received and previously degreased with acetone, in the synthesized mixture at a 

withdrawal speed of 10 mm min
-1

 without residence time using a dip coater 

(Nima, model DC Small) and subsequently placed in an incubator-compressor 

(ICP-400, Memmert) and kept at 40 ºC for about two weeks. Two sets of coated 

HDGS samples were produced, by one and three dip steps process. The 

identification of the different prepared samples is in Table 1. 
 

Table 1. Adopted codes for the coating samples prepared. 
 HDGS OIH coated sample 

Jeffamine Pure Matrix Cr(III) doped 

D-400 ® U(400) U(400)_Cr(III) 

ED-600® U(600) U(600)_Cr(III) 

ED-900® U(900) U(900)_Cr(III) 

ED-2000® U(2000) U(2000)_Cr(III) 

 

Preparation of mortar 
The corrosion behavior of HDGS coated with the different OIH coatings were 

studied in mortar that was prepared according to EN 196-1 standard [31] using 

cement type I 42,5R (Table 2), distilled water and normalized sand (AFNOR) 

(Table 3) with a weight ratio of 6:2:1 (sand:cement:water). 

 
Table 2. Characteristic values of mechanical, physical and chemical properties for 

cement type I 42,5R. 
Mechanical and physical properties:  Cement type I 42,5R 

Start of binding (min) 150 

Volume stability acc. to Le Chatelier (mm) 1.0 

Pressure strength after 2 days (MPa) 30 

Pressure strength after 28 days (MPa) 54 

Chemical properties:   

SO3 (%) 3.5 

CI (%) 0.01 

Loss on calcination (%) 3.0 

Content of insoluble residue  1.0 
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Table 3. Physical and chemical properties for normalized sand (AFNOR). 
Physical and chemical properties 

Physical state  Solid 

SiO2  > 95 % 

Form  Crystallized 

Form of grains  Subangular 

Specific temperature for changes in 

physical state 

Fusion temperature: 1610 °C  

Boiling temperature: 2230 °C 

Decomposition temperature  None 

Flash Point  Not applicable 

Self-inflammation temperature  Not applicable 

Explosive characteristics  Not applicable 

Mass volume 
Absolute: 2,63 g/m³  

Apparent: 1,6 g/cm³  

Solubility  insoluble in water, soluble in hydro-fluoric acid 

 

Electrochemical studies  
To assess the reliability of the electrochemical system, macrocell current density 

(igal) [25] measurement was performed using a system based on two electrodes 

(parallel rectangular metal plates with 5.0x1.0x0.1 cm), as shown in Fig. 1. The 

working electrode (WE) was a HDGS plate, also with two cm
2
 of area, and 

coated as described in section “Preparation of HGDS coated samples”. The grey 

area in Fig. 1 represents the OIH coating on HDGS. The counter electrode (CE) 

was a stainless steel (SS, type 316L) plate with an active surface section of 2 

cm
2
. The edges of both of the electrodes plates, as well the non-active area and 

connecting zones were protected with a two-component epoxy resin (Araldite®). 

The set of the two electrodes was fixed in plastic lids that fit in a 100 mL 

polyethylene flask (Normax). For comparison purposes, cells using a HDGS WE 

without any OIH coating were prepared to be used as reference (hereafter 

referred generically as control cells). 

 

 
Figure 1. Schematic representation of electrochemical system developed for assess 

coating performance through monitoring of igal. Legend: 1. Stainless steel counter 

electrode (CE); 2. HDGS coated working electrode (WE), with OIH gel deposit 

represented by a grey zone.  

 

To assemble the electrochemical cells used to measure igal, 120±10 g of fresh 

mortar was transferred to each 100 mL PE flask where the electrodes were 

immersed and the flask closed (mortar was prepared according to section 2.3 and 

immediately used). Using an automatic data acquisition system (Datataker 

DT505, series 3), the igal measurement of the prepared cells were performed 

through reading the potential difference to the terminals (shunted with a 100 Ω 
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resistor vide Fig. 2) immediately after being embedded in fresh mortar. 

Measurements were performed with a periodicity of 1 minute at the first seven 

days, and at each 5 minutes during the remaining time until the record was 

completed, at the 74th day. 

 

 
Figure 2. Schematic representation of assembled two electrodes cell. Legend: 1. PC; 2. 

Datataker; 3. Power supply; 4 and 5. Working and counter electrodes, respectively; 6. 

Mortar. 

 

Stereoscopic Microscopy 
The HDGS surfaces were thoroughly examined in the laboratory using a zoom 

stereomicroscope system (Olympus SZH). 

 

Scanning electron microscopy (SEM/EDS)  
The morphology of the OIH sol-gel coatings surface applied on HDGS 

specimens were performed with scanning electron microscope (SEM, JEOL 

JSM-6400) coupled with an EDS detector (Inca-xSight Oxford Instruments), and 

the surface of specimens were covered with an ultrathin coating of gold 

deposited by sputter coating. The SEM/EDS studies of the HDGS coated samples 

were performed on the substrate before and after being in contact with mortar 

after 74 days. After the essay was completed, the hardened cementitious 

materials were thoroughly broken to release the HDGS specimens and allow 

SEM/EDS observations. 

 

 

Results and discussion 
Fig. 3 shows the macrocell current density (igal) response collected from the 

different prepared electrochemical cells involving the HDGS coated samples and 

the control cell during 74 days [30].  

The high values of igal recorded for the first days of contact with the fresh mortar 

are due to zinc corrosion, that in the presence of high alkaline environments it 

corrodes [9-15]. Nevertheless, the coated samples tend to lower values when 

compared to control sample. The obtained evolution of cell current density with 

time shows a profile that is dependent on OIH coating matrix, the presence of 

Cr(III) ions and the number of dipping steps. Globally the measured current 
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density decreases along the contact time showing in the 74
th

 day an average value 

that is about two orders of magnitude lower than the initially observed. Cells 

based on one layer coated HDGS samples reveal a very noisy behavior 

comparatively with samples with a coating produced by three dipping steps. 

 

 
Figure 3. Recorded galvanic current profiles.  

 

As shown, the igal cell values are sensitive to the external laboratory temperature 

variation and to the composition and number of OIH deposited (one and three) 

layers. The collected data make possible to distinguish between the different used 

OIH coatings as the output response changes with the coating composition and 

with the presence or absence of inhibitor (Cr(III)). It was also observed that the 

uncoated HDGS specimen shows the higher current density values among the all 

set of tested macrocells. 

Fig. 4 shows the images obtained with a stereomicroscope for the uncoated 

HDGS (control) and for HDGS coated by one dip step for U(400), U(600) and 

U(2000). The stereomicroscope images that show to be less attacked by the 

electrolyte correspond to cells where lower values of igal data were recorded.  

Fig. 5 shows the SEM images and EDS spectra obtained for the control and for 

HDGS coated with U(400) by one dip step.  

Fig. 6 shows the SEM images and EDS spectra obtained for HDGS coated with 

U(600), U(900) and U(2000) by one dip step. 
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Figure 4. Observation of HDGS surfaces uncoated (control) and coated with OIH sol-

gel with stereomicroscope after being embedded in mortar for 74 days, showing the 

presece of zinc oxide and traces of iron oxides.  

 

 
Figure 5. BSE images of the HDGS samples surface for control and HDGS coated with 

U(400) after being embedded in mortar for 74 days with the localization of the EDS 

spectra; 1, 2 EDS spectra for control; 3 and 4 EDS spectra for HDGS coated with 

U(400). 

 

From the analysis of the collected set of images obtained by SEM, it can be 

concluded that the surface of uncoated HDGS sample (control cell) reveals the 

most severe damages among all that were exposed to mortar. The obtained 

results from EDS analysis reveal the presence of iron peaks. These results are in 

agreement with igal data and with stereomicroscope images. 
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Figure 6. BSE images of the HDGS samples surface coated with U(600), U(900) and 

U(2000) after being embedded in mortar for 74 days with the localization of the EDS 

spectra; 1, 2 EDS spectra for HDGS coated with U(600); 3 and 4 EDS spectra for 

HDGS coated with U(900); 5 EDS spectrum for HDGS coated with U(2000). 

 

The topic of this paper is to evaluate the response and the behavior of the 

electrochemical system when testing different OIH coatings. It was observed that 

the HDGS coated samples do not show to be similarly affected by the corrosive 

action of mortar components and depend on the OIH coating applied, as observed 

in stereomicroscope images displayed in Fig. 4. The EDS correspondent spectra 

show the presence of carbon and silicon on the surface indicating that the applied 

coating preserved their initial form. The information obtained by these two 

techniques confirms that the barrier stability and efficiency of the OIH gel 

coating contribute to minimize the recorded current density and consequently 

minimize the extent of HDGS corrosion process. The results obtained show that 

the electrochemical system is reliable and suitable to evaluate the behavior of the 

OIH coatings. 

 

 

Conclusions 

The analysis of the results obtained by optical and SEM/EDS of the WE of the 

disassembled cells show to be consistent with the data obtained by the 

electrochemical technique. The behavior of coated HDGS samples revealed to be 

highly sensitive to the OIH coatings composition allowing distinguishing 
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between the distinct coatings with different thicknesses. The collected data also 

allow concluding that presence of Cr(III) ions within the OIH gel matrix 

contributes to mitigate the corrosion process in the first instances of contact with 

fresh concrete.  

The results show that the developed system allows to distinguish with high 

reliability OIH sol-gel coatings using the same matrix with slight variations like 

doping with inhibitor (Cr(III)). The system revealed to be highly sensitive to the 

external temperature variation since when the temperature increases the igal data 

also increase. The designed system implemented seems to be suitable to evaluate 

the in situ degradation of HDGS coated with different OIH films embedded in 

concrete. 

Future studies should be performed in situ in order to evaluate the output 

response to the presence of aggressive agents such as local acidification, 

carbonation, ingress of chloride ions and/or depletion of O2. 
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