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Abstract 

In this work, activated carbon was produced from residue of fruit of Sapindus and used 

for the application of adsorption removal of malachite green dye from simulated 

aqueous solution. Adsorption kinetics of malachite green onto actived carbon was 

studied in a batch system. The effects of pH and contact time were examined. The 

malachite green maximum adsorption occurred at pH 6 (4.5 mg/g) and the lowest 

adsorption occurred at pH 2 (4.1 mg/g). The apparent equilibrium was reached after 120 

min. Optimal experimental conditions were determined. In order to determine the best-

fit-adsorption Kinetics, the experimental data were analyzed using pseudo-first-order, 

pseudo-second-order, pseudo-third-order, Esquivel, and Elovich models. Linear 

regressive and non-linear regressive methods were used to obtain the relative 

parameters. The statistical functions were estimated to find the suitable method which 

fit better the experimental data. Both methods were suitable to obtain the parameters. 

The non-linear pseudo-first-order model was the best to fit the equilibrium data. The 

present work showed that activated carbon can be used as a low cost adsorbent for the 

malachite green removal from water. 

 

Keywords: Activated carbon (AC), malachite green (MG), linear, non-linear regression. 

 

 

Introduction 

Malachite green (MG) is used in coloring paper, dyeing cottons, wools, silk, 

leather and coating for paper stock. The treatment of effluents containing such 

dyes is of great interest due to their harmful impacts on receiving waters [1]. The 

best efficient method used for the quickly removal of dyes from the aqueous 

solution is the physical adsorption [2]. Aromatic solutes showed slighty better 

adsorption than aliphatic solutes, due to the potential to form bonds with 

the basal planes of activated carbon. No significant influence of solute charge or 

size was observed [3]. This work aims to understand the potential of activated 
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carbon (AC) to remove MG dye from simulated aqueous solution in batch mode. 

The adsorption kinetics efficiency of MG was investigated in order to optimize 

the experimental parameters such as contact time and pH at an agitation speed of 

300 rpm, initial adsorbent concentration of 5 mg/L and temperature of 25 °C. The 

statistical functions were used to estimate the error deviations between 

experimental and theoretically predicted adsorption kinetic values, including 

Linear and non-linear method. The optimization procedure required a defined 

error function in order to evaluate the fit of equation to the experimental data. 

 

Material and methods 

MG (4-(4-(dimethylamino) alpha-phenylbenzylidene)-2,5-cyclohexadien-1-

ylidene) dimethylammonium chloride, C23H25ClN2, Mw = 364 g/mol (Fig. 1) 

used in the present study, was purchased from Merck (Germany) and was 

selected from the list of dyes normally used in Algeria. The sieved residue of 

fruit of Sapindus was washed with distilled water to remove any residues or 

impurities. Subsequently, it was dried in an oven for 12 hours at 80 °C. The 

material was pyrolysized in a fluidized bed furnace at different temperature 

range.  The  pyrolysis process was undergone at temperatures of 300, 400 and 

500 °C for half an hour. Then, the material produced was discharged from the 

first cyclone of the fluidized bed furnace. This fast pyrolysis method produced 

variety of material at different temperatures. Activation of the material was done 

by using steam average flowrate 300 cc/min at 800 °C in a muffle furnace for 1 

and 2 hours.  The  activated  carbon  was  then ground and dried in an oven at 

100 °C for overnight. 

 

Figure 1. Structure of malachite green [4]. 

 

Adsorption kinetics of MG onto AC was studied in a batch system. The effects of 

pH and equilibrium time were examined. The adsorption parameters were 

optimized. In each experiment pre weighed amount of adsorbent (50 mg) was 

added to 50 mL of dye solution (5 mg/L) taken in a 250 mL of conical flask and 

0.1 M NaOH or 0.1 M HCl were added to adjust the pH value. This solution was 

agitated at 300 rpm and centrifugated. The MG concentration in solution was 

determined at λmax = 620 nm by spectrophotometer UV-1700 PHARMA SPEC 

SHIMADZU. The amount of MG adsorbed per mass unit of adsorbent at time t, 

q (mg/g), (Eq. (1)) was calculated as: 

M

V
CCq )(

0
−=    (1) 
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where C0 is the initial MG concentration (mg/L), C is the dye concentration at 

time t, V is the solution volume (L) and M is the adsorbent mass [g) [5]. The 

effect of pH was conducted by mixing 1 g of adsorbent with 1 L of MG synthetic 

solution of 5 mg/L. The solution pH was varied from 2 to 12, by adding 0.1 M 

NaOH or 0.1 M HCl solutions. The suspension was shaken for 24 h at 25 °C. 

Kinetic experiments were performed by mixing 50 mL of dye solution (5 mg/L) 

with 50 mg (0.05 g) of adsorbent. The initial pH for each dye solution was set at 

6. The suspensions were kept under agitation during 24 hours. MG 

concentrations in the supernatants were calculated and allowed to determine the 

amount adsorbed of dyes onto AC. The experiments were realized against time 

(5, 10, 15, 20, 25, 30, 40, 50, 60, 90, 120, 150, 180, 240 and 300 min). 

 

 

Results and discussion 

To study the effect of every parameter, it is necessary to fix the values of others. 

The elimination of pollutant from simulated aqueous solution by adsorption is 

extremely influenced by the medium of the solution which affects the nature of 

the adsorbent surface charge, the ionization extent, the aqueous adsorbate species 

speciation and the adsorption rate. The adsorptive process through functional 

groups dissociation on the adsorbate and adsorbent were affected by a pH change 

[6]. The adsorption of MG increases with the increase of pH of the solution.  Fig. 

2 shows the effect of the pH on the adsorption capacity of MG onto AC at 

various initial solution pH in the range 2–12 under the following conditions: 

initial dye concentration of 5 mg/L and AC dose of 1 g. From Fig. 2, we noticed 

that the pH of the medium affect strongly the kinetic of MG fixation, showing an 

increase of the adsorption capacity with the pH, from 4.1 to 4.5 mg/g for pH 

increasing from 2 to 6. 

 

 
Figure 2. Effect of the initial pH on the AC equilibrium adsorption capacity. 

 

From this study, it is obvious that in the basic medium, the negatively charged 

species tends dominating and the surface began to acquire a negative charge. In 

this case the adsorbent surface is negatively charged. The MG adsorption 

increased due to the increasing of electrostatic attractions between the negative 

charge of AC particles and the positive charge of MG species. 

Fig. 3 highlights the adsorption Kinetics of MG onto AC. In the light of the 

result, the synthetic sample could be divided in three zones: (i) 0-30 min, which 

indicated the fast adsorption of MG, suggesting rapid external diffusion and 
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surface adsorption; (ii) 30-60 min, showed a gradual equilibrium, and (iii) 60-300 

min, indicated the plateau of the equilibrium state. The adsorption was rapid at 

the initial stage of the contact, but it gradually slowed down until the equilibrium. 

 

 
Figure 3. MG adsorption kinetic on AC. 

 

The fast adsorption at the initial stage can be attributed to the fact that a large 

number of surface sites are available for adsorption. After a lapse of time, the 

remaining surface sites are difficult to be occupied because of the repulsion 

between the solute molecules of the solid and bulk phases make it take too long 

time to reach equilibrium. Adsorption is a complex process whereby it is 

influenced by several parameters related to adsorbent and to the physicochemical 

conditions under which the process is carried out [7]. In order to understand the 

mechanism of the adsorption process, the following equations: [pseudo-first 

order (Lagergren Model) [1], pseudo-second order [8], Esquivel [9], pseudo-third 

order [10], and Elovich [11]] were selected to fit the experimental kinetic data. 

Equations of these models were illustrated in Table 1.  
 

Table 1. Adsorption kinetics models and their linear and non-linear forms. 
Applied model  Non-linear form Linear form Reference 

Pseudo-first order 
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Pseudo-second order 
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)exp(
54
qkk

dt

dq
−=  

ln()ln(
5455

tkkkkq +=
 

[11] 

Elovich (Roginsky-

Zeldovich] [type 2) )exp(
67
qkk

dt

dq
=  

1()ln()/1(
766

kkkq +=
 

[28] 

 

where k1 is pseudo-first order rate constant (min-1), k2 is pseudo-second order 

rate constant (g/(mg min)), k3 is pseudo-third order rate constant (g2/(mg2 min)), 

KE is Esquivel rate constant (min), k4 is Elovich rate constant (mg/(g min)), k5  is 

extent of surface coverage and activation energy of the process (g/mg), k6 extent 

of surface coverage and activation energy of the process (g/mg), k7 Elovich rate 

constant (mg/(g min)), qe is amount of adsorption at equilibrium (mg/g), and θ 

dimensionless parameter (=q/qe). A non-linear and linear fitting procedure using 

Excel and Origin software were used, respectively. The constants of all models 

are given in Table 2. 

The optimization procedure required a defined error function in order to evaluate 

the fit of equation to the experimental data. In this part, the best-fitting equation 

is determined using the well-known special functions to calculate the error 

deviation between experimental and predicted data. The mathematical equations 

of these error functions are illustrated in Table 3. 
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Table 2. A Linear and non-linear Pseudo-first order, Pseudo-second order, Esquivel, 

Pseudo-third order and Elovich kinetics constants related to the adsorption of MG onto 

AC. 
Model Linear Method Non-linear Method 

 Pseudo-first order (type 1) Non-linear Pseudo-first order (type 1) 

qe 3.501 3.600 

K1 0.001 0.023 

R2 0.843 0.983 

Equation log(qe-q) - log(qe)= -0.015*t q=3.600*(1-exp(-0.023*t)) 

Pseudo-first order (type 2) 

qe 3.501  

K1 0.034 

R2 0.843 

Equation ln(qe-q) - ln(qe)= -0.034*t 

                                               Pseudo-first order (type 3)                             Non-linear Pseudo-first 

order (type 2) 

C0 5 5 

K1 0.005 0.011 

R2 0.419 0.773 

Equation ln(C/C0)=-0,005*t C=5*exp(-0.011*t) 

 Pseudo-first order (type 4)  

C0 5  

K1 0.006  

R2 0.457  

Equation Ln(1-((C0-C)/(C0-Ce)=-0.006*t  

Pseudo-second order (type 1)  

qe 4.081 4.297 

K2 0.007 0.025 

R2 0.986 0.963 

Equation (t/q) = 0.245*t +8.959 q=4.297*(1-(1/(1+0.025*t))) 

Pseudo-second order (type 2) 

qe 3.876  

K2 335.449  

R2 0.974  

Equation 1/q = 9.303*(1/t) + 0.258  

Pseudo-second order (type 3) 

qe 3.610  

K2 0.008  

R2 0.974  

Equation ((1/q)-(1/qe))*(qe
2) = 118.9*(1/t)  

Pseudo-second order (type 4) 

qe 4.279  

K2 0.006  

R2 0.821  

Equation q = - 41.28*(q/t) + 4.272  

Pseudo-second order (type 5) 

qe 4.210  

K2 0.001  

R2 0.821  

Equation (q-qe)*qe = -169.000*(q/t)  

Pseudo-second order (type 6) 

qe 4.895  

K2 0.004  

R2 0.821  

Equation (q/t) = -0.019*q + 0.093  

Pseudo-second order (type 7) 

qe 3.69  

K2 0.021  
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R2 0.843  

Equation (1/(qe-q))-(1/qe) = 0.021*t  

Pseudo-second order (type 8) 

qe 4.000  

K2 0.006  

R2 0.974  

Equation 1/t=0.104*(1/q)-0.026  

Pseudo-second order (type 9) 

qe 3.690  

K2 0.078  

R2 0.843  

Equation (qe/(qe-q))-1 = 0.078*t  

Pseudo-second order (type 10)  

qe 3.690  

K2 0.078  

R2 0.843  

Equation (θ/(1-θ)) = 0.078*t  

Pseudo-second order (type 11) 

C0 5.000  

K2 0.009  

R2 -4.210  

Equation (C-(1/C0)) = 0.009*t  

Pseudo-second order (type 12) 

C0 5.000  

K2 0.002  

R2 0.655  

Equation ((1/C)-(1/C0)) = 0.002*t  

Pseudo-second order (type 13) 

C0 5.000  

K2 0.003  

R2 0.334  

Equation (1/(C0-C)) = -0.003*t+0.910  

Esquivel Model (type 1) 

qe 3.876 4.296 

KE 36.058 39.642 

R2 0.974 0.963 

Equation 1/q = 9.303*(1/t)+0.258 q=2.145*(t/(t+7.322)) 

Esquivel Model (type 2) 

qe 3.610  

KE 32.940  

R2 0.974  

Equation (((1/q)-(1/q))*qe)= 32.940*(1/t)  

Pseudo-third order (type 1) 

qe 0.957  

K3 -0.005  

R2 0.202  

Equation (1/q²)= - 0.005*t + 1.092  

Elovich (type 1) 

K4 0.300  

K5 0.897  

R2 0.937  

Equation q = 0.897*ln(t) – 1.178  

 Elovich (type 2)  

K4 

K5 

R2 

Equation 

0.241 

1.114 

0.937 

q = 0.897*ln(t) – 1.178 
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Table 3. Mathematical equations of error functions. 
 

Error functions 

 

Equations References 
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where n is the number of experimental data points, qcalc is the predicted 

(calculated) quantity of MG adsorbed onto AC, qexp are the experimental data, p 

is the number of parameters in each kinetic model, ARED is the average relative 

error deviation (dimensionless parameter), ARE is the average relative error 

(dimensionless parameter, ARS is the average relative standard error 

(dimensionless parameter), HYBRID is the hybrid fractional error function 

(dimensionless parameter), MPSD Marquardt’s is the percent standard deviation 

(dimensionless parameter), MPSED Marquardt’s is the percent standard 

deviation (dimensionless parameter), SAE=EABS is the sum of absolute error 

(mg/g), SSE is the sum of the squares of the errors (mg/g)2, and Δq(%) is the 

normalized standard deviation (mg/g). The constants of all error analysis are 

represented in Table 4. 
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Table 4. Error deviation data related to the MG adsorption onto AC using most 

commonly used functions. 
Error functions ARED SAE = EABS MPSED SSE HYBRID ARE ARS Δq(%)=100*ARS MPSD 

Linear  

pseudo-first order type 1 88.296 27.01 0.957 62.345 1.03 0.883 0.92 91.985 139.372 
Linear pseudo-first order 

type 2 16.785 3.238 0.262 1.577 0.196 0.168 0.252 25.18 30.21 
Non Linear pseudo-first  

order type 1 
7.418 1.878 0.104 0.372 0.086 0.074 0.1 10.035 12.491 

Linear pseudo-second  

order type 1 53.541 15.202 0.599 19.59 0.624 0.535 0.575 57.557 81.729 
Linear pseudo-second  

order type 2 150.535 22.657 2.595 53.576 1.756 1.505 2.493 249.307 221.741 
Linear pseudo-second  

order type 3 52.495 15.165 0.582 19.46 0.612 0.525 0.559 55.964 77.503 
Linear pseudo-second  

order type 4 56.451 16.019 0.631 21.709 0.658 0.564 0.607 60.67 86.129 
Linear pseudo-second  

order type 5 85.274 25.928 0.926 57.19 0.995 0.853 0.889 88.957 134.008 
Linear pseudo-second  

order type 6 61.762 17.55 0.69 26.031 0.72 0.617 0.663 66.314 94.32 
Linear pseudo- second  

order type 7 18.704 6.069 0.221 3.961 0.218 0.187 0.213 21.277 33.97 
Linear pseudo- second  

order type 8 55.365 15.806 0.617 21.105 0.646 0.553 0.593 59.318 84.577 
Linear pseudo- second  

order type 9 41.342 6.62 0.644 5.594 0.482 0.413 0.619 61.912 63.684 
Linear pseudo- second  

order type 10 41.342 6.62 0.644 5.594 0.482 0.413 0.619 61.912 63.684 
Non-linear pseudo- second  

order type 1 10.03 2.856 0.126 0.804 0.117 0.1 0.121 12.109 17.097 
linear Esquivel type 1 150.043 22.601 2.584 53.275 1.75 1.5 2.482 248.245 220.95 
linear Esquivel type 2 132.837 18.876 2.359 42.237 1.55 1.328 2.267 226.707 200.085 
Non-linear Esquivel 10.199 2.881 0.128 0.803 0.119 0.102 0.123 12.355 17.256 

Linear Elovich  

model type 1 15.884 3.891 0.208 1.353 0.185 0.159 0.2 19.979 23.516 
Linear Elovich  

model type 2 15.884 3.891 0.208 1.353 0.185 0.159 0.2 19.979 23.516 

 

Adsorption kinetic data are the basic requirements for the design of adsorption 

systems. In order to optimize the design of a specific sorbate/sorbent system to 

remove MG from aqueous solution, it is important to establish the most 

appropriate correlation for the experimental kinetic data. Applicability of some 

statistical tools to predict optimum adsorption kinetic of MG onto AC after linear 

regression analysis showed that the highest R2 value and the lowest ARED, ARE, 

SAE, ARS, MPSD, Δq, SSE, MSPED, and HYBRID values could be suitable 

and meaningful tools to predict the best-fitting equation models. The best fitting 

is determined based on the use of these functions to calculate the error deviation 

between experimental and predicted equilibrium adsorption kinetic data, after 

linear analysis. Hence, according to Table 4, it seems that the non-linear pseudo-

first order model was the most suitable model to satisfactorily describe the 

studied adsorption phenomenon. Therefore, based on these mentioned results, the 

best useful error estimation statistical tools should point out the non-linear 

pseudo-first order model followed by non-linear pseudo-second order and non-

linear Esquivel as the best-fitting models. 
 

 

Conclusion 

AC was used for the MG adsorption in simulated aqueous solution. In batch 

mode, the adsorption was highly dependent on various operating parameters, 

such as contact time, and pH. The obtained results allowed to establish the 

following optimal conditions: 120 min time contact and pH 6 leading to 70 % 

MG removal obtained at home temperature. The adsorption kinetic of MG onto 

AC can be better fitted by the pseudo-second order linear model [type 9 and type 

10) as compared to the non-linear pseudo-second-order model, linear pseudo-

second-order model, pseudo first order, pseudo third order, and Esquivel models. 
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On the whole, the experimental results showed that AC is suitable adsorbent for 

the removal of MG dye. 
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