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Abstract 
In continuation of our previously published work entitled Mechanical and Corrosion 
Behavior of Inconel 718 Nickel-Based Super Alloy Doped with Graphene Nanoplatelets, the 
present study investigated the tribological performance of modified IN 718 doped with GrNs.  
Friction and wear properties were analised using an advance universal tribometer, while 
surface mophologies were studied by SEM. The modified SA tribological properties 
validation was done in relative comparison to those of pure IN 718. Mechanical properties 
with higher , younger modulus values, better morphologies, higher AWI, lower SWR and 
µ values were noted on the modified IN 718. Nonetheless, an increase in the load proved to 
affect the tribological oxide layer properties of both pure and modified IN 718.  
 
Keywords: pure and modified IN 718, GrNs, frictional wear, tribology and SEM. 
 
 
Introduction 
IN 718 Ni-based SA is known to possess higher tensile strength, excellent creep 
resistance, low-cycle fatigue strength, good formability and weldability [1-10]. 
Hence, it is often chosen as a good alloy, to be used for high speed machinery shafts. 
However, it has been found that IN 718 is pronouncely affected by frictional wear 
during its application. In most cases, this SA serious drawbacks during applications 
are due to its difficulties during machining. In fact, IN 718 is widely known to have 
poor thermal conductivity, work hardening high rate, high  and chemical affinity 
towards cutting tool materials [11-15]. All these inherent properties not only are 
                                                           
The abbreviations and symbols definitions lists are in pages 24-25. 



Khotso Khoele et al. Portugaliae Electrochimica Acta 41 (2023) 17-27 

18 

problematic to the machining processes, but also render this SA  susceptible to inferior 
mechanical properties, corrosion and frictional wear during its applications.  
In an endeavour to improve IN 718 corrosion, surface and mechanical properties, at 
elevated temperatures [16], we doped it with GrNs. From the engaged methods and 
analyses, higher  values were obtained. Furthermore, less reduction of the young 
modulus values occurred during high temperature oxidation. PDP curves also showed 
more electropositive Ecorr and lower Icorr values for the modified IN 718. Most notably, 
GrNs,  and EIS measurements showed a strong oxide layer that is more corrosion 
mitigative. Likewise, morphologies showed no localized corrosion under all 
conditions. All those features proved that IN 718 doping by GrNs played a significant 
role in improving its corrosion resistance, mechanical and surface properties [17]. 
Nonetheless, frictional wear analyses were not conducted.  
Hence, the present study investigated and reported on the modified IN 718 tribological 
performance, which was fabricated by selective laser melting. Investigations were 
made on wear and frictional properties, under room temperature. Surface 
morphologies were also incorporated into reference to the tribological impact. All 
comparisons were made relative to the IN 718 standard material. 
 
Experimental 
Materials 
Both pure and modified IN 718 were supplied in a dimensional size of 15 × 15 × 5 mm.  
 
Hardness and modulus of elasticity measurements 
Mechanical properties were clarified from  and young modulus analyses. The  
depths were measured using ASTM E384-05 criterion that is described elsewhere 
[18]. Young modulus tests on both bare and coated foils were carried out following 
EN 10002-1 measurement guide lines, and they were performed by an Instron 3384 
testing machine.  
 
Surface characterizations 
SEM was used to examine the surface morphologies, while XRD was used to 
determine phases of the oxides phases which that were formed during the tribological 
tests.  
 
Tribological set-up and measurements 
Friction and wear properties of bare and nano-coated foils were studied by a 
RTEC2441 (s/n :, USA) universal tribometer. The measurements were carried out at 
room temperature. The tests were run under dry lubrication conditions that are 
explained further ahead. A steel ball was used as the counterpart material against both 
standard and modified materials. The diameter size of the steel ball was 1.50 mm, and 
the acquisition rate was 3.14 Hz, with an equivalent stroke length of 6 mm. The 
measurements were intended to incorporate friction and wear properties from both 
pure and modified IN 718.  
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SWRs and AWIs 
AWIs and SWRs calculations were carried out from the equations 1 and 2 below.  
 
 𝐴𝑊𝐼 =

·  

·  
  (1) [19] 

 
where: MB and MC are the mass loss from the bare and coated foils, respectively; DC 

and DB are the density of the coated and bare foils, respectively; and WRB and WRC 

are the total number of wheel revolutions during the tests on the bare and coated foils, 
respectively. 
 

 𝑆𝑊𝑅 =
·

 =
· ·ƿ

 
·

  (2) [19] 
 
where: V is the velocity (m/s); F is the force (10 N); L is the total sliding distance; 
and m and ƿ are the engaged material mass loss and density, respectively. 
 
Results and discussion 
Hardness and modulus of elasticity measurements 
Fig. 1 shows the mechanical properties of both pure and modified IN 718. As it can 
be seen in Fig. 1, pure IN 718 has lower  and younger modulus values than those of 
the modified one. Confirming the mechanical properties criterion that generally 
recognizes improvement of materials possessing higher  and modulus elasticity 
values [20-25], the incorporated nanoplatelets GrNs provided better tribological 
properties.  

 
Figure 1. Elasticity modulus and  of both pure and modified IN 718. 

 

Tribology measurements (wear and friction) 
SWR and AWI rate 
Overall wear analyses on both pure and modified IN 718 are displayed in Fig. 2 and 
3. As it can be seen in Fig. 2, AWI is much higher for the modified IN 718. On the 
other hand, pure IN 718 had higher SWR than that of the modified one, as it can be 
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seen in Fig. 3, which suggests better tribological properties of the modified IN 718 
[26-30]. 
 

 
Figure 2. AWI for both pure and modified IN 718. 

 

 
Figure 3. SWR for both pure and modified IN 718. 

 
Analyses of µ 
The  µ analyses on both pure and modified IN 718, in a progression of time under no 
loads and several loads, are shown in Figs. 4 and 5. As it can be seen in Fig. 4, an 
increase in the load rapidly affected the oxide layer and µ on the pure IN 718 surface. 
Furthermore, an occurrence of a running-in period is swhon n Fig. 4 (i and iii), which 
could be due to an interlock of asperities between IN 718 and the steel ball from the 
tribometer [31]. In Fig. 4 (ii), it can be seen that µ starts by decreasing, and this 
phenomenon is called transient period, during which  IN 718 was suspended in a space 
where it was smoothed before its oxide layer was transferred to the steel ball. As time 
went by, minor fluctuations occurred on the oxide layer formed under no load 
conditions. However, as the load was increased, major fluctuations occurred on pure 
IN 718.  
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Figure 4. µ of pure IN 718 under no load and several low loads (5 to 10 N), in a progression 
of time. 
 

The running-in period was also observed on modified IN 718, as it can be seen from 
Fig. 5. Nevertheless, µ was lower under all conditions. An improvement observed on 
the modified IN 718 was due to Gr oxidation, which gave a better structural strength 
to the SA, thus improving its load carrying capacity [32, 33]. An increase in the load 
was also found to have caused fluctuations on the steady-state condition of the oxide 
layer, during the modified IN 718 tribological measurement. There are normally two 
factors that could lead to aggressive tribological conditions, as the load increases: a 
friction-induced thermal effect during sliding, under high loads [34]; and an increased 
contact between the rubbed surfaces, which was excerbated by the higher load [35, 
36]. Therefore, it was noted the cushion formation of an oxide layer that acted as 
buffer (immunity), detering IN 718 surface wear.  
 

 
Figure 5. µ of modified IN 718 under no load and several low loads (5 to 10 N), in a 
progression of time. 
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SEM analyses 
SEM micrographs for the engaged substrates, before tribological measurements, are 
shown in Fig. 6, while the ones captured after tribological measurements are shown 
in Figs. 7 and 8.  
 

 
Figure 6. Surface morphologies on IN 718: (a) bare; (b) and modified, before tribological 
measurements [18]. 
 

Shallow inclusions and voids, under no load conditions, on pure IN 718, can be seen 
in Fig 7 (a). As the load was increased to 5 N, ploughs, voids and pores were 
discovered on pure IN 718 surface, as it can be seen in Fig. 7 (b). At the load of 10 N, 
tracks were discovered on its surface, which can be seen in Fig. 7 (c).  
 

 
Figure 7. Surface morphologies on: (i) pure IN 718 under no load; (ii) 5 N applied load; and 
(iii) 10 N applied load, in a progression of time. 
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Contrarily, micrographs of a smooth oxide layer can be noticed on modified IN 718 
surface, which are shown in Fig. 8 (a). At an applied load of 5 N, shallow fine grooves 
were noticed. The corresponding scan is shown in Fig. 8 (b). With the increase in load 
to 10 N, shallow ploughs were found on its surface, as it can be seen in Fig. 8 (c). 
SEM analyses, herein, corroborate the earlier results on SWR and µ coefficient. This 
observation, therefore, strongly suggests that GrNs incorporation into the IN 718 
provided improved mechanical properties and a tribological oxide layer which 
lowered the frictional wear.  
 

 
Figure 8. Surface morphologies on modified IN 718: (a) under no load; (b) 5 N applied load; 
and (c) 10 N applied load, in a progression of time. 
 

Conclusions 
The tribological characterization of both pure and modified IN 718 has throughly been 
investigated in this study. The following conclusions were drawn up from the main 
findings: 

 Modified IN 718 possessed higher  and younger modulus values. 
 Pure IN 718 had relatively lower AWIs. Contrarily, higher AWIs and lower 

SWRs were discovered for the modified IN 718. 
 Lower µ values were noted, under all the conditions, on the modified IN 718. 

However, an increase in the load proved to affect the tribological oxide layer 
of both pure and modified IN 718. 

 Shallow inclusions and voids were not noted in the pure IN 718 morphologies, 
under no load condition, while voids and pores were discovered for an 
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increased load of 5 N on the pure SA. Moreover, micrographs composed of 
wear tracks were noted at 10 N applied load on pure IN 718.  

 Contrarily, micrographs showed a smooth oxide layer formed on the modified 
IN 718 surface, under no load condition. With an increase in the loads to 5 and 
10 N, shallow fine grooves and shallow ploughs, respectively, were noticed on 
the modified SA. 

 Generally, GrNs incorporation into IN 718 provided improved mechanical 
properties and a tribological oxide layer, which lowered frictional wear.  
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Abbreviations 
AWI: abrasive wear index 
Ecorr: corrosion potential   
EIS: electrochemical impedance spectroscopy  
GrNs: graphene nanoplatelets  
Icorr: corrosion current density 
IN 718: Inconel 718   
IN 718 + GrNs: modified IN 718 
Ni: nickel  
PDP: potentiodynamic polarization   
SA: super alloy  
SEM: scanning electron microscopy  



Khotso Khoele et al. Portugaliae Electrochimica Acta 41 (2023) 17-27 

25 

SWR: specific wear rate  
XRD:X-ray diffraction  
 
Symbols definitions: 
µ: friction coefficient  
: hardness   
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