

http://www.aprh.pt/rgci/pdf/rgci-314_Oliveira.pdf DOI:10.5894/rgci314

Erosão de dunas com os modelos XBeach e Litprof * Dune Erosion with the XBeach and Litprof Models

Filipa S. B. F. Oliveira 1

RESUMO

Este estudo visa melhorar a avaliação e previsão da vulnerabilidade/resiliência de sistemas dunares à acção das ondas em condições de tempestade marítima. O objectivo foi avaliar o desempenho dos modelos XBeach e Litprof na erosão de dunas. Testaram-se os modelos para um caso de verificação de erosão de duna realizado em canal de grande escala de laboratório. A avaliação do desempenho dos modelos baseou-se na análise da evolução morfológica, em indicadores de impacto (volume de erosão, recuo da duna e recuo do topo da duna) e num indicador de erro (Brier Skill Score). Apresentam-se e testam-se os parâmetros por defeito (standard set of parameter settings) para ambos os modelos. Da avaliação de desempenho dos dois modelos com os parâmetros por defeito concluiu-se que o desempenho do modelo XBeach é bom e do modelo Litprof é fraco. Recomenda-se que numa aplicação de engenharia para previsão da erosão de dunas, em que importa não só a precisão como também estar do lado da segurança, o modelo XBeach com os parâmetros por defeito deve ser usado com precaução, uma vez que o volume de erosão foi subestimado. Apresentam-se, discutem-se e testam-se os parâmetros de calibração para ambos os modelos. Concluiu-se que os parâmetros mais influentes na evolução morfológica foram: beta, break, facua, gammax, hswitch, lws e wetslp para o modelo XBeach, e Maximum Angle of Bed Slope para o modelo Litprof. Os parâmetros lws e wetslp do modelo XBeach foram aqueles que conferiram ao perfil final uma geometria mais próxima da configuração observada. Os resultados obtidos para o indicador de erro BSS evidenciam que o melhor desempenho foi obtido com alteração do parâmetro lws e que o segundo melhor desempenho foi obtido com a alteração do parâmetro wetslp, sendo a ambos atribuída a classificação de excelente. Uma vez que a modificação do parâmetro lws permitiu melhorar a previsão de duas características fundamentais sob o ponto de vista da engenharia que são o recuo do topo da duna e o limite da extensão da zona activa (onde se observou a formação da barra submersa durante a experiência), considera-se que ele é de grande relevância na simulação da evolução da erosão de dunas com o modelo XBeach. No seu melhor desempenho, o modelo Litprof calibrado reproduziu correctamente o recuo do topo da duna, simulou a formação de uma barra submersa na posição observada experimentalmente, simulou incorrectamente o volume de erosão (cerca de metade do observado) e o declive da duna, e consequentemente gerou um avanço da duna ao nível da água em vez de recuo. Por este motivo, recomenda-se precaução na aplicação do modelo Litprof para previsão da erosão de dunas. Da comparação dos modelos morfodinâmicos XBeach e Litprof nas duas fases, i.e., na fase de teste com os parâmetros por defeito e na fase de calibração, concluiu-se que foi o modelo Xbeach que apresentou o melhor desempenho neste caso de estudo. A execução deste estudo permitiu testar e ficar a conhecer a elevada capacidade do modelo XBeach e a razoável capacidade do modelo Litprof na previsão da erosão de dunas.

Palavras-chave: Erosão Costeira, Duna, Modelação Morfodinâmica, XBeach, Litprof.

^{1 -} Laboratório Nacional de Engenharia Civil, Lisboa, Portugal. e-mail: foliveira@lnec.pt

^{*} Submissão: 6 Dezembro 2011; Avaliação: 7 Janeiro 2012; Recepção da versão revista: 17 Janeiro 2012; Aceitação: 22 Maio 2012; Disponibilização on-line: 12 Junho 2012

ABSTRACT

The present study aims to improve the evaluation and prediction of the vulnerability/resilience of dune systems to the wave action under maritime storm conditions. The objective was to evaluate the performance of the XBeach and Litprof deterministic numerical models for dune erosion. The models were tested for a case of dune erosion performed in a large scale channel laboratory test. The evaluation of the models performance was based on the analysis of the morphological evolution, on impact indicators (erosion volume, dune retreat and retreat of the top of the dune) and on an error indicator (Brier Skill Score). The default parameters (standard set of parameter settings) are presented and tested for both models. The conclusion on the models performance with the default parameters was that the XBeach model is good and the Litprof model is poor. It is recommended that for an engineering application of dune erosion prediction, where accuracy and safety are both important, the XBeach model with the default parameters should be applied with precaution since the erosion volume was underestimated. The calibration parameters are presented, discussed and tested. It was concluded that the most influent parameters on the morphological evolution were: beta, break, facua, gammax, hswitch, lws and wetslp for the XBeach model, and Maximum Angle of Bed Slope for the Litprof model. The parameters lws and wetslp of the XBeach model were those which provided to the final profile the most similar geometry to the one observed in the laboratory experiment. The results obtained for the error indicator BSS revealed that the best performance was obtained by changing the calibration parameter lws and that the second best performance was obtained by changing the calibration parameter wetslp, having both been classified as excellent. Since the morphological change reached by changing the lws parameter improved the prediction of the two characteristics, which are crucial under an engineering point of view, retreat of the top of the dune and sea side limit of the extension of the active zone (where was observed the formation of the submerged bar during the experiment), it was concluded that this parameter is of great relevance in the simulation of dune erosion for the XBeach model. The Litprof model after calibration simulated correctly the retreat of the top of the dune, simulated the development of the submerged bar in the location observed in the experiment, simulated incorrectly the erosion volume (approximately half of the observed volume) and the dune face slope, and consequently caused an advance of the dune at the water level instead of a retreat. For this reason, it is recommended precaution in the application of the Litprof model for dune erosion. From the comparison of the XBeach and Litprof models in both stages, i.e., in the stage of testing the default parameters and in the stage of calibration, it was concluded that it was the XBeach model that had the best performance in this case study. This study allowed testing and acknowledging the high capacity of the XBeach model and the reasonable capacity of the Litprof model in the prediction of dune erosion.

Keywords: Coastal Erosion, Dune, Morphodynamic Modelling, XBeach, Litprof.

1. INTRODUÇÃO

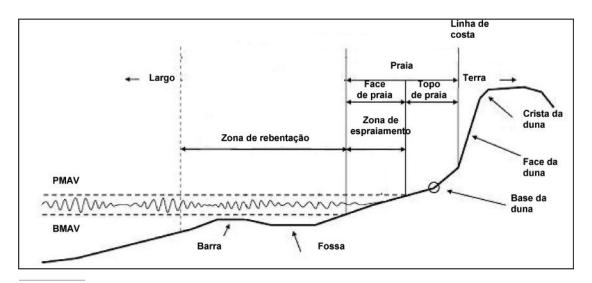
O presente estudo enquadra-se na área da dinâmica costeira e visa melhorar a avaliação e previsão da vulnerabilidade/ resiliência de sistemas dunares à acção das ondas em condições de tempestade marítima caracterizadas por fortes ventos, baixas pressões atmosféricas e curta duração (horas a dias). A motivação do estudo é o facto destes sistemas constituírem a mais importante defesa natural costeira na interface terra-mar e a sua erosão, galgamento, rotura e inundação durante estes eventos extremos constituir um elevado risco no que respeita a perda de território, degradação ambiental, destruição de património e até perda de vidas humanas.

Dada a complexidade dos processos costeiros que governam a dinâmica sedimentar na interface mar-terra, desde o limite da zona de rebentação das ondas até ao topo de praia ou duna que fica ao alcance da acção das ondas em condições extremas de agitação marítima e nível do mar, a simulação com modelos matemáticos, precisos e robustos para problemas de engenharia, da morfodinâmica de todas as subzonas (zona de rebentação, zona de espraiamento, topo de praia e sistema dunar) deste domínio espacial de forma contínua é bastante exigente, quer em termos de conhecimento dos processos físicos envolvidos quer em termos de recursos computacionais. O modelo XBeach (eXtreme Beach behaviour) (Roelvink et al., 2009), actualmente em fase de desenvolvimento e disponível à comunidade científica https://publicwiki.deltares.nl/display/XBEACH/ Home), é um dos modelos mais promissores porque se trata de um modelo determinístico, com formulação matemática bastante robusta e inclusiva dos principais processos, e está aberto a futuro desenvolvimento. O modelo Litprof (DHI, 2008) do sistema de modelação Litpack (vastamente aplicado a nível mundial em projectos de investigação e consultoria) é um dos modelos mais eficazes nesta área, que, tendo a vantagem de ser um modelo determinístico, tal como o modelo XBeach, tem o inconveniente de não estar aberto a desenvolvimentos por parte da comunidade científica. O objectivo deste estudo foi avaliar o desempenho de cada um dos modelos, XBeach e Litprof, na simulação numérica da erosão de dunas, e compará-los entre si. A aplicação de um modelo mais eficaz na análise e previsão da vulnerabilidade de sistemas dunares à erosão permitirá quantificar com maior rigor os riscos associados.

Os modelos numéricos de erosão de dunas são geralmente verificados numa primeira fase com experiências laboratoriais, em canais de grande escala, uma vez que estas permitem um maior controlo dos processos envolvidos, quer nas condições iniciais e de forçamento quer na monitorização da evolução, e consequentemente garantem maior confiança nos resultados. As condições em canal equivalem a uma praia uniforme ao longo da componente longitudinal. Só posteriormente, após uma satisfatória simulação numérica da componente transversal, faz sentido desenvolver estes modelos na dimensão longitudinal e, nesta fase, aplicá-los em casos de campo. O modelo XBeach já se encontra desenvolvido na componente longitudinal, no entanto, a complexidade dos processos na faixa costeira onde se aplica é particularmente tão elevada, que continua a ser necessário melhorar a sua abordagem transversal. A importância do investimento

científico no desenvolvimento da componente transversal deste tipo de modelos é tão grande, que na Holanda, onde os modelos de verificação da segurança dos sistemas dunares são de extrema importância para a gestão costeira, aplica-se o modelo empírico DUROS (Brandenburg, 2010), um modelo transversal desenvolvido para zonas costeiras uniformes com base em resultados de testes laboratoriais (Vellinga, 1986). O estudo aqui apresentado enquadra-se na primeira fase, em que o modelo é testado com experiências laboratoriais, em canais de grande escala. Pretendeu-se simular um caso de erosão de uma duna experimental (escala 1:6) previamente realizado em laboratório no âmbito de um projecto de investigação.

A aplicação de ambos os modelos, mas principalmente do modelo XBeach, requer a introdução de um elevado número de parâmetros relativos aos processos físicos costeiros. Em projectos de engenharia, onde é de grande utilidade a aplicação deste tipo de modelos, acontece muitas vezes ser inviável a medição de alguns destes parâmetros. Para ultrapassar esta dificuldade, os autores de ambos os modelos recomendam a utilização de alguns valores por defeito (standard set of parameter settings). Neste artigo, apresentamse os resultados dos modelos para o conjunto dos parâmetros por defeito recomendados e sugerem-se, no caso do modelo XBeach, e testam-se parâmetros de calibração. É com base na comparação dos dois conjuntos de resultados numéricos (que resultam da aplicação dos modelos com os parâmetros por defeito e dos modelos calibrados) com os resultados observados que se faz a avaliação do desempenho dos modelos XBeach e Litprof.


2. ABORDAGEM METODOLÓGICA

A erosão da zona costeira praia-duna resulta de uma acção de duas forças, a resistência da praia-duna decorrente

das propriedades da mecânica de solos e a acção hidráulica decorrente da capacidade de transporte das ondas e correntes. A simulação matemática do fenómeno é bastante complexa pois exige a resolução precisa dos processos de hidrodinâmica, transporte sedimentar e morfodinâmica, em simultâneo ao longo das zonas de rebentação, espraiamento, topo de praia e duna (Figura 1).

À semelhança do que acontece com outros processos físicos, a modelação numérica da erosão praia-duna pode caracterizar-se em três tipos de modelos conceptuais: empíricos, semi-empíricos e determinísticos ou baseados em processos. Do primeiro tipo, modelos empíricos, são os modelos onde existe uma relação explícita entre a erosão da praia-duna e importantes parâmetros físicos, que não são quantificados de forma individual mas sim através das consequências, ou seja, volume erodido e recuo da duna. O modelo DUROS (Brandenburg, 2010; Vellinga, 1986) aplicado na Holanda para verificação da segurança dos sistemas dunares é um exemplo deste tipo. Do segundo tipo, modelos semi-empíricos, são os modelos em que os principais processos físicos são individualmente descritos através de formulações matemáticas. O modelo SBeach (Larson & Kraus, 1989) é um exemplo deste tipo. Finalmente os modelos determinísticos, também vulgarmente designados por modelos baseados em processos, são os modelos em que os processos físicos são modelados individualmente. Os modelos numéricos aplicados neste estudo, o modelo XBeach e o modelo Litprof, são ambos deste tipo.

O modelo XBeach trata-se de um modelo bi-dimensionalhorizontal constituído por vários sub-modelos dos processos costeiros de propagação de ondas infragravíticas e grupos de ondas gravíticas, espraiamento, erosão e galgamento de dunas, avalanche, transporte sedimentar e evolução do fundo (Roelvink *et al.*, 2010). O objectivo do XBeach é modelar estes processos nos quatro regimes de impacto de

Figura 1. Definição da zona de estudo na interface mar-terra (adaptado de U. S. Army Corps of Engineers, 1984). *Figure 1.* Definition of the study zone in the sea-land interface (adapted from U. S. Army Corps of Engineers, 1984).

tempestade marítima definidos por Sallanger (2000): regime de espraiamento, regime de colisão, regime de galgamento e regime de inundação. Neste estudo em particular, apenas ocorrem os regimes de espraiamento e colisão, cuja abordagem metodológica se descreve abaixo.

Para além da contribuição das ondas curtas ou gravíticas, o escoamento da zona de espraiamento é em grande parte devido a ondas infragravíticas (que resultam de interacções harmónicas não lineares de grupos de ondas curtas) (Tucker, 1954). Guza e Thornton (1982) mostraram que a altura de onda da banda espectral correspondente às ondas infragravíticas aumenta linearmente com a altura significativa de onda ao largo, enquanto a energia correspondente às ondas curtas da banda espectral atinge um limite devido à dissipação ao longo da zona de rebentação. Com base nesta constatação, Raubenheimer e Guza (1996) mostraram que em condições de tempestade a componente devida às ondas infragravíticas é dominante no espraiamento. No modelo XBeach a dinâmica da zona de espraiamento é resolvida com base na acção bi-dimensional-horizontal de ondas de grupo e resultantes ondas infragravíticas sobre a batimetria. O forçamento das ondas de grupo resulta da variação no tempo da acção da onda (Phillips, 1977) combinada com um modelo de dissipação para grupos de onda (Roelvink, 1993). É usado um modelo de turbulência (Svendsen, 1984; Nairn et al., 1990; Stive & Vriend, 1994) para representar o momento associado à turbulência superficial gerada pela rebentação que se desloca em direcção à costa.

As interacções harmónicas não lineares de grupos de ondas gravíticas geram ondas infragravíticas e correntes longitudinais e transversais à costa. A interacção ondacorrente na camada limite gera um aumento das tensões de atrito que afectam as ondas infragravíticas e correntes (Soulsby *et al.*, 1993). A aleatoriedade das ondas incidentes é considerada com base na descrição de Feddersen *et al.* (2000), cuja aplicação (Ruessink *et al.*, 2001) evidenciou uma boa estimativa das correntes longitudinais para um coeficiente de inércia constante.

Durante o regime de espraiamento e colisão o fluxo de massa transportado pelas ondas e pela turbulência superficial gerada pela rebentação retorna em direcção ao mar como escoamento de retorno. Este escoamento é responsável pelo processo de erosão, uma vez que é sob a sua acção que a areia é removida da face da duna em desmoronamento. Apesar de existirem várias propostas para o perfil vertical da corrente neste escoamento (Reniers *et al.*, 2004b) a variação vertical da corrente em condições de tempestade não é muito grande, e por esse motivo ainda não foi introduzida no modelo XBeach.

Os processos de transporte de areia nas zonas de rebentação e espraiamento são bastante complexos pois resultam da combinação do movimento orbital de ondas curtas e longas, de correntes e da turbulência superficial gerada pela rebentação. O transporte sedimentar induzido pela assimetria vertical e horizontal das ondas, que se estima inferior à contribuição dada pelas ondas longas e corrente média (de Vries *et al.*, 2008), é considerado através da formulação proposta por Soulsby (1997) num modelo que resolve os processos na zona de rebentação para ondas curtas propagadas em grupo. Esta formulação foi aplicada

com sucesso na geração de correntes de retorno (Damgard *et al.*, 2002; Reniers *et al.*, 2004a) e rotura de ilhas barreira (Roelvink *et al.*, 2003).

O modelo Litprof trata-se de um modelo bi-dimensional-vertical constituído por vários sub-modelos dos processos costeiros: um modelo de hidrodinâmica, um modelo quasi-tri-dimensional de transporte de sedimentos e um modelo morfológico (de evolução do fundo). A abordagem metodológica utilizada é descrita em Oliveira (2001) e DHI (2008). Este modelo não inclui os processos costeiros da zona de espraiamento. Neste estudo o modelo foi testado considerando duas teorias de onda, uma clássica e outra semi-empírica. A teoria de onda clássica considerada foi a teoria de 5ª ordem de Stokes (Fenton, 1985) e a teoria semi-empírica considerada foi a teoria de Doering & Bowen (1995), na qual são consideradas parametrizações da onda para incluir as assimetrias horizontal e vertical.

Neste estudo utilizaram-se dois tipos de indicadores para avaliar o desempenho dos modelos: indicadores de impacto e de erro. Os indicadores de impacto foram o volume de erosão (por metro de comprimento longitudinal de praia) e o recuo (da duna e do topo da duna), definidos por

Volume de erosão =
$$\int_{z_1}^{z_2} (perfil inicial - perfil pós-tempestade) dz$$
(1)

e

$$Recuo = |x_0 - x_t| \tag{2}$$

sendo z_1 e z_2 a profundidade do ponto inicial do perfil e a cota do topo da duna, respectivamente; e x_0 e x_1 as coordenadas horizontais, a um determinado nível de referência (nível da água ou topo da duna) da duna frontal, no perfil inicial e no perfil pós-tempestade, respectivamente.

A medição de erro para avaliar o desempenho dos modelos foi feita com base em três critérios, o erro sistemático ou tendenciosidade (bias), a precisão e a capacidade (skill) do modelo. O método aplicado foi o Brier Skill Score (BSS) de van Rijn et al. (2003), que compara previsões ($z_{b,c}$) e medições de perfil ($z_{b,m}$) com o perfil inicial ($z_{b,0}$) e tem em conta o erro de medição ∂ (que aqui se assumiu nulo). Define-se por

$$BSS = 1 - \frac{\left\langle \left(\left| z_{b,c} - z_{b,m} \right| - \partial \right)^2 \right\rangle}{\left\langle \left(z_{b,0} - z_{b,m} \right)^2 \right\rangle}$$
(3)

onde os parêntesis angulares denotam a média.

Apresenta-se na Tabela 1 a classificação do desempenho de modelos morfodinâmicos proposta por van Rijn *et al.* (2003).

Tabela 1. Classificação de desempenho com base no *Brier Skill Score* (BSS) proposto por van Rijn *et al.* (2003).

Table 1. Performance classification based on the Brier Skill Score (BSS) proposed by van Rijn et al. (2003).

BSS (van Rijn et al., 2003)
1,0 - 0,8
0,8 - 0,6
0,6 - 0,3
0,3 – 0,0
< 0,0

Na secção seguinte descreve-se apenas a formulação do modelo XBeach uma vez que a formulação do modelo Litprof se pode encontrar, descrita pela autora, em Oliveira (2001).

3. FORMULAÇÃO DO MODELO XBEACH

O modelo resolve de forma acoplada as equações bidimensionais-horizontais de propagação de ondas, de escoamento, de transporte de sedimentos e de actualização do fundo (da continuidade), para condições de fronteira de espectro de ondas e escoamento não estacionárias. É utilizada uma malha estruturada alternada (*staggered grid*), rectilínea e não equidistante, implementada num sistema de coordenadas no qual o eixo-x está orientado em direcção à costa, i.e., perpendicular à linha de costa, e o eixo-y está orientado ao longo da costa.

Uma vez que as escalas de comprimento são pequenas, frequentemente ocorre escoamento super-crítico (Fr>1, sendo Fr o número de Froude) e se dá prioridade à estabilidade numérica, os esquemas de discretização numérica predominantes são de primeira ordem a montante (first order upwind), por forma a resolver os elevados gradientes da hidrodinâmica e morfodinâmica na zona de rebentação e espraiamento minimizando oscilações numéricas. São utilizados esquemas explícitos com passo de cálculo automático baseado no critério de Courant. Estes esquemas implementados numa malha estruturada alternada (staggered grid) garantem a robustez do modelo. Seguidamente descrevem-se de as principais equações governantes do modelo XBeach.

A equação da acção da onda é dada por

$$\frac{\partial A}{\partial t} + \frac{\partial c_x A}{\partial x} + \frac{\partial c_y A}{\partial y} + \frac{\partial c_\theta A}{\partial \theta} = -\frac{D_w}{\sigma}$$
(4)

onde

$$A(x,y,t,\theta) = \frac{S_w(x,y,t,\theta)}{\sigma(x,y,t)}$$
 (5)

$$c_x(x, y, t, \theta) = c_g \cos(\theta) + u^L$$
 (6)

$$c_{v}(x, y, t, \theta) = c_{\varrho} sen(\theta) + v^{L}$$
(7)

$$c_{\theta}(x,y,t,\theta) = \frac{\sigma}{senh 2kh} \left(\frac{\partial h}{\partial x} sen\theta - \frac{\partial h}{\partial y} cos\theta \right) + cos\theta \left(sen\theta \frac{\partial u}{\partial x} - cos\theta \frac{\partial u}{\partial y} \right) + sen\theta \left(sen\theta \frac{\partial u}{\partial x} - cos\theta \frac{\partial u}{\partial y} \right)$$
(8)

sendo θ o ângulo de incidência relativamente ao eixo-x, $A(x,y,t,\theta)$ a acção da onda, S_w a densidade de energia da onda em cada componente direccional, σ a frequência intrínseca da onda obtida pela relação de dispersão linear, $c_x(x,y,t,\theta)$ e $c_y(x,y,t,\theta)$ as velocidades de propagação da acção da onda nas direcções x e y, respectivamente, c_g a velocidade de grupo obtida pela teoria linear da onda, u^L e v^L as velocidades Lagrangianas médias em profundidade nas direcções transversal e longitudinal, respectivamente, $c_\theta(x,y,t,\theta)$ a velocidade de propagação no espaço- θ , k o número de onda obtido pelas equações eikonel, ω a frequência obsoluta da onda, e D_w a energia dissipada devido à rebentação, que se descreve abaixo.

A equação de dissipação da energia total, integrada no espectro direccional, devida à rebentação, é dada por

$$\overline{D}_{w} = \frac{\alpha}{\pi} Q_{b} \sigma E_{w} \tag{9}$$

onde

$$Q_b = 1 - exp(-\left(\frac{H_{rms}}{H_{max}}\right)^n)$$

$$E_w(x, y, t) = \int_0^{2\pi} S_w(x, y, t, \theta) d\theta$$
(10)

sendo $\alpha = O(1), \ H = \sqrt{\frac{8E_w}{\rho g}}, H_{rms}$ a altura de onda quadrática

média, $H_{max} = \frac{\gamma \tanh kh}{k}$, ρ a densidade da água, γ o índice

de rebentação (parâmetro empírico) e $E_w(x, y, t)$ a energia total. No modelo assume-se que a energia total dissipada, \overline{D}_w , é distribuída proporcionalmente pelas componentes direccionais, sendo por isso

$$D_{w}(x,y,t,\theta) = \frac{S_{w}(x,y,t,\theta)}{E_{w}(x,y,t)} \overline{D}_{w}(x,y,t)$$
(11)

Estimada a distribuição espacial da acção da onda e energia da onda, são calculadas as tensões de radiação, com base na teoria linear, da seguinte forma:

$$S_{xx,w}(x,y,t) = \int \left(\frac{c_g}{c} (1 + \cos^2 \theta) - \frac{1}{2}\right) S_w d\theta$$
 (12)

$$S_{xy,w}(x,y,t) = S_{yx,w}(x,y,t) = \int sen\theta \cos\theta \left(\frac{c_g}{c}S_w\right) d\theta$$
 (13)

$$S_{yy,w}(x,y,t) = \int \left(\frac{c_g}{c} (1 + \sin^2 \theta) - \frac{1}{2}\right) S_w d\theta \tag{14}$$

A equação da energia de turbulência superficial gerada pela rebentação é acoplada à equação da acção/energia da onda na qual o termo de dissipação de energia da onda na rebentação é usado como fonte para turbulência superficial. Tal como para a acção da onda, é considerada a distribuição direccional da turbulência superficial mas o espectro de frequência é representado por uma única frequência média. A equação da turbulência superficial é dada por

$$\frac{\partial S_r}{\partial t} + \frac{\partial c_x S_r}{\partial x} + \frac{\partial c_y S_r}{\partial y} + \frac{\partial c_\theta S_r}{\partial \theta} = -D_r + D_w$$
 (15)

onde

$$c_x(x, y, t, \theta) = c\cos(\theta) + u^L \tag{16}$$

$$c_{v}(x, y, t, \theta) = c \operatorname{sen}(\theta) + v^{L}$$
(17)

sendo $S_r(x, y, t, \theta)$ a componente direccional da energia de turbulência superficial, $c_x(x, y, t, \theta)$ e $c_y(x, y, t, \theta)$ as velocidades de propagação da energia de turbulência superficial nas direcções x e y, respectivamente, e a velocidade de propagação no espaço- θ , $c_\theta(x, y, t, \theta)$, semelhante à expressão (8), assumindo assim que as ondas e a turbulência superficial se propagam na mesma direcção. A velocidade de fase, $c = \sigma/k$, é obtida através da teoria linear da onda. A dissipação da turbulência superficial por componente direccional da onda, $D_r(x, y, t, \theta)$, resulta da distribuição da dissipação total da turbulência superficial proporcionalmente pelas componentes direccionais da onda, sendo por isso

$$D_r(x, y, t, \theta) = \frac{S_r(x, y, t, \theta)}{E_r(x, y, t)} \overline{D}_r(x, y, t)$$
(18)

onde

$$\overline{D}_r = \frac{2g\beta_r E_r}{c} \tag{19}$$

A contribuição da turbulência superficial para as tensões de radiação é dada por

$$S_{xx,r}(x,y,t) = \int \cos^2 \theta S_r d\theta \tag{20}$$

$$S_{xy,r}(x,y,t) = S_{yx,r}(x,y,t) = \int sen\theta \cos\theta S_r d\theta$$
 (21)

$$S_{yy,r}(x,y,t) = \int sen^2 \theta S_r d\theta$$
 (22)

Esta contribuição é adicionada às tensões calculadas em (12), (13) e (14). O resultante tensor das tensões de radiação é

$$F_{x}(x,y,t) = -\left(\frac{\partial S_{xx,w} + \partial S_{xx,r}}{\partial x} + \frac{\partial S_{xy,w} + \partial S_{xy,r}}{\partial y}\right)$$
(23)

$$F_{y}(x,y,t) = -\left(\frac{\partial S_{xy,w} + \partial S_{xy,r}}{\partial x} + \frac{\partial S_{yy,w} + \partial S_{yy,r}}{\partial y}\right)$$
(24)

O sistema de equações para o escoamento para águas pouco profundas é dado por

$$\frac{\partial u^{L}}{\partial t} + u^{L} \frac{\partial u^{L}}{\partial x} + v^{L} \frac{\partial u^{L}}{\partial y} - f v^{L} - v_{h} \left(\frac{\partial^{2} u^{L}}{\partial x^{2}} + \frac{\partial^{2} u^{L}}{\partial y^{2}} \right) =
= \frac{\tau_{sx}}{\rho h} - \frac{\tau_{bx}^{E}}{\rho h} - g \frac{\partial \eta}{\partial x} + \frac{F_{x}}{\rho h}$$
(25)

$$\frac{\partial v^{L}}{\partial t} + u^{L} \frac{\partial v^{L}}{\partial x} + v^{L} \frac{\partial v^{L}}{\partial y} + fu^{L} - v_{h} \left(\frac{\partial^{2} v^{L}}{\partial x^{2}} + \frac{\partial^{2} v^{L}}{\partial y^{2}} \right) =
= \frac{\tau_{sy}}{\rho h} - \frac{\tau_{by}^{E}}{\rho h} - g \frac{\partial \eta}{\partial y} + \frac{F_{y}}{\rho h}$$
(26)

$$\frac{\partial \eta}{\partial t} + \frac{\partial h u^L}{\partial x} + \frac{\partial h v^L}{\partial y} = 0 \tag{27}$$

onde as equações do momento e continuidade são formuladas em termos de velocidade Lagrangiana (definida como a distância a que uma partícula de água se desloca num período de onda, dividida por esse período). Esta velocidade relaciona-se com a velocidade Euleriana (a velocidade média da onda curta num ponto fixo) da seguinte forma

$$u^{L} = u^{E} + u^{S}$$
 e $v^{L} = v^{E} + v^{S}$ (28)

sendo u^{S} e v^{S} as velocidades de Stokes nas direcções x e y, respectivamente, dadas por

$$u^{S} = \frac{E_{w} \cos \theta}{\rho hc} \qquad e \quad v^{S} = \frac{E_{w} \sin \theta}{\rho hc}$$
 (29)

Os parâmetros τ_{sx} e τ_{sy} são as tensões devidas ao vento, τ_{bx}^{E} e τ_{by}^{E} são as tensões de atrito no fundo (calculadas com velocidades Eulerianas), η é o nível da água, h é a

profundidade, V_h é a viscosidade horizontal, f é o coeficiente

de Coriolis e $F_x^{"}$ e F_y são as tensões induzidas pelas ondas. A equação de advecção difusão para transporte de sedimentos é dada por

$$\frac{\partial hC}{\partial t} + \frac{\partial hCu^{E}}{\partial x} + \frac{\partial hCv^{E}}{\partial y} + \frac{\partial}{\partial x} \left(D_{h}h \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(D_{h}h \frac{\partial C}{\partial y} \right) = \frac{hC_{eq} - hC}{T_{s}}$$
(30)

onde

$$C_{eq} = \frac{A_{sb} + A_{ss}}{h} \left(\left| u^{E} \right|^{2} + 0.018 \frac{u_{rms}^{2}}{C_{d}} \right)^{0.5} - u_{cr} \right)^{2.4} \left(1 - \alpha_{b} m \right)$$
(31)

sendo C a concentração de sedimentos média em profundidade, que varia na escala temporal do grupo de onda, D_h o coeficiente de difusão de sedimentos, T_s o tempo de mobilização dos sedimentos definido como

$$T_s = max(0.05 \frac{h}{w_s}; 0.2) s$$
, w_s a velocidade de queda, C_{eq} a

concentração de equilíbrio de sedimentos, u_{cr} a velocidade crítica, C_{d} o coeficiente de inércia apenas devido ao escoamento (sem considerar o efeito das ondas curtas), α_b o parâmetro de calibração e A_{sb} e A_{ss} os coeficientes de transporte de fundo e em suspensão, respectivamente, que são dependentes do tamanho e densidade do sedimento e da profundidade.

A equação de avalanche utilizada é dada pela expressão

$$\left| \frac{\partial z_b}{\partial x} \right| > m_{cr} \tag{32}$$

onde m_{cr} é o declive crítico. O processo de avalanche é accionado quando o declive entre as duas últimas células molhadas por uma elevada altura de onda infragravítica é superior ao declive crítico. Nessa altura, dá-se a passagem de um volume de sedimentos de uma célula para a outra de forma a satisfazer a condição de declive crítico entre essas

A equação da actualização do fundo (da continuidade) é dada por

$$\frac{\partial z_b}{\partial t} + \frac{f_{mor}}{(1-p)} \left(\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} \right) = 0$$
 (33)

onde

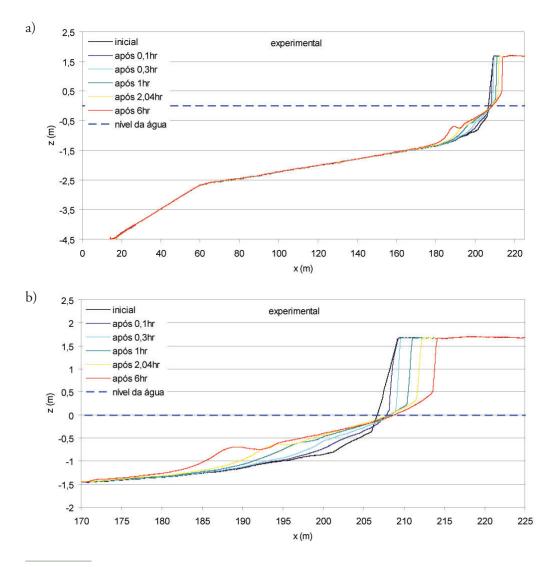
$$q_{x}(x,y,t) = \left(\frac{\partial hCu^{E}}{\partial x}\right) + \left[\frac{\partial}{\partial x}\left(D_{h}h\frac{\partial C}{\partial x}\right)\right]$$
(34)

$$q_{y}(x,y,t) = \left(\frac{\partial hCv^{E}}{\partial y}\right) + \left[\frac{\partial}{\partial y}\left(D_{h}h\frac{\partial C}{\partial y}\right)\right]$$
(35)

Sendo p a porosidade, f_{mor} um factor de aceleração morfológica de O(1-10), e q_x e q_y as taxas de transporte sedimentar nas direcções x e y, respectivamente.

4. RESULTADOS

4.1. Caso de verificação


Este caso de teste do modelo, descrito em WL | Delft Hydraulics (2006) como teste T01, diz respeito a um perfil de referência com uma duna bastante robusta. A escolha deste caso de verificação deve-se ao facto dele ser ideal para testar o desempenho dos modelos XBeach e Litprof na erosão de dunas, pois para além de incluir uma duna bastante robusta na sua configuração geométrica, conforme salientado, foi realizado em canal de grande escala (factor de escala de profundidade n_d igual a 6). Trata-se de um perfil com declive 1:20 desde o fundo, ao nível -4,5 m, até aproximadamente ao nível -2,7 m, seguido de um declive 1:70 até aproximadamente ao nível -0,8 m, por sua vez seguido de um declive 1:20 até aproximadamente ao nível -0,3 m, e finalmente de um declive de 1:3 até ao topo da duna (Figura 2). O sedimento utilizado caracteriza-se por ter D50=0,2 mm, D90=0,3 mm e densidade 2,65. O teste foi realizado à temperatura aproximada de 9°C em modelo reduzido à escala 1:6. As condições de onda incidente foram um espectro de Pierson-Moskowitz com altura significativa Hs=1,5 m, período de pico Tp=4,9 s e duração 6 horas. O teste foi temporariamente interrompido para realizar medições do fundo a 0,1, 0,3, 1, 2,04 e 6 horas a contar a partir do início da experiência laboratorial. Os intervalos no início do teste foram mais curtos porque no início de um teste as taxas de erosão são mais elevadas. Da acção das ondas resultou um perfil de erosão caracterizado por um forte recuo da duna: aproximadamente 9 m³.m⁻¹ foram extraídos da duna frontal, correspondendo este volume a um recuo de aproximadamente 2 m ao nível da água e de aproximadamente 4,8 m ao nível do topo da duna (conforme eq. (2) de definição de recuo). A erosão da duna não se deu gradualmente mas sim por etapas, i.e., em determinados instantes ocorreu o deslizamento de blocos de duna com volume razoável. Este processo de avalanche ocorreu quando o declive da duna era quase vertical ou mesmo ligeiramente negativo (quando o topo de duna estava já pendurado). Observou-se ainda que o instante de avalanche (de deslizamento dos blocos de duna) nem sempre coincidiu com o instante de impacto da onda. Relativamente à morfologia do perfil de erosão, observou-se que nos primeiros instantes, em que a taxa de erosão é mais elevada, o volume de areia erodido da duna foi depositado na zona do perfil submerso imediatamente adjacente formando um declive de praia mais suave. Posteriormente, com o decorrer do processo erosivo, formou-se uma barra submersa não muito pronunciada na zona de deposição de areia mais afastada da face de praia e duna (Figura 2).

A avaliação do desempenho dos dois modelos, XBeach e Litprof, para este caso de verificação foi realizada em duas fases. Numa primeira fase testaram-se os modelos com os parâmetros por defeito. Numa segunda fase calibraram-se os modelos, ajustando os parâmetros de forma a melhorar o seu desempenho, i.e., a similaridade com os resultados observados. Em cada uma das fases compararam-se os resultados de ambos, sempre com base nos resultados observados durante a evolução do perfil experimental.

4.2. Avaliação com parâmetros por defeito

A aplicação de modelos de morfodinâmica requer a introdução de um elevado número de parâmetros relativos

aos processos físicos costeiros. Em projectos de engenharia, onde é de grande utilidade a aplicação deste tipo de modelos, acontece muitas vezes ser inviável a medição de alguns destes parâmetros. Para ultrapassar esta dificuldade, os autores dos modelos recomendam a utilização de alguns valores por defeito, encontrados com base na execução de um elevado número de testes submetidos à mais vasta gama de condições possível. Contudo, no modelo XBeach existe um elevado número de possíveis parâmetros de calibração, o que faz com que o modelo tenha um elevado potencial para reproduzir correctamente os processos envolvidos mas também seja

Figure 2. Evolução do perfil para o caso de verificação: a) perfil completo e b) pormenor. **Figure 2.** Profile evolution for the verification case: a) complete profile and b) detail.

bastante exaustivo o procedimento de teste que conduz à sua correcta aplicação. Seguidamente descrevem-se as aplicações dos modelos XBeach e Litprof com os parâmetros por defeito e faz-se a sua comparação.

4.2.1. Modelo XBeach

Após análise dos dois conjuntos de valores dos parâmetros por defeito sugeridos pelos autores em Roelvink *et al.* (2009) e Roelvink et al. (2010), optou-se para este caso de estudo por atribuir um novo conjunto de valores aos parâmetros por defeito, o mesmo conjunto utilizado pela autora para o teste do modelo XBeach no caso do desenvolvimento de uma barra submersa sem erosão do topo de praia (Oliveira, 2011). Fez-se constituir esse conjunto por: para os parâmetros com valor igual em ambos os conjuntos, por esse valor; e para os restantes parâmetros, pelo valor atribuído para os casos teste Lip11d-2E, Deltaflume_2005_T04, Zelt, Delilah e Zwin (Roelvink et al., 2009), sendo os dois primeiros testes laboratoriais e os restantes três testes de campo (Zelt e Delilah nos USA, Zwin na Europa). Apresentam-se na Tabela 2 os valores de alguns dos parâmetros por defeito atribuídos neste estudo onde se usou uma malha de espaçamento horizontal de 1 m.

Os resultados da evolução morfológica (Figura 3) mostram que o modelo XBeach com os parâmetros por defeito simula de forma razoável a acção erosiva das ondas na quase totalidade do perfil. As maiores diferenças relativamente aos resultados experimentais encontram-se no declive da duna, que se observou quase vertical durante a experiência laboratorial e o modelo reproduz mais suave, e na barra submersa formada na extremidade da zona activa do perfil (para valores de x entre 185 e 192 m), que o modelo não reproduz.

4.2.2. Modelo Litprof

Aplicou-se o modelo Litprof com os parâmetros por defeito recomendados pelos autores. Descrevem-se na Tabela 3 os parâmetros por defeito atribuídos. Testaram-se duas teorias de onda, a teoria de Doering e Bowen (1995) (B&D) e a teoria de 5ª ordem de Stokes (Fenton, 1985) (Stokes5).

Comparando os resultados de evolução morfológica do modelo Litprof com os parâmetros por defeito para ambas as teorias de onda consideradas com os resultados experimentais, constata-se que o modelo Litprof não simula o perfil de erosão caracterizado por um forte recuo da duna observado experimentalmente (Figura 4a-b).

4.2.3. Comparação

Compararam-se os modelos XBeach e Litprof, ambos com os parâmetros por defeito, com base nos resultados laboratoriais. As Figuras 5a-e, 6a-c e 7 mostram, respectivamente, os perfis após 0,1, 0,3, 1, 2,04 e 6 horas de simulação (à escala laboratorial), os indicadores de impacto para avaliação do desempenho dos modelos, volume de erosão, recuo da duna (ao nível da água) e recuo do topo da duna, e o indicador de erro para avaliação do desempenho dos modelos, BSS.

Os resultados de evolução do perfil (Figuras 5a-e) indicam que o modelo XBeach sobrestima o recuo do topo da duna

numa fase inicial do processo erosivo, até aproximadamente ao final do quarto intervalo de medição do perfil experimental (após 2,04 horas), e posteriormente passa a subestimar este parâmetro até à conclusão da experiência (após 6 horas). O modelo XBeach simula o declive da face da duna significativamente mais suave do que o declive observado, que é praticamente vertical durante a experiência. Durante o processo erosivo a base da duna não só recua como sobe na vertical. No entanto, o modelo XBeach não reproduz com exactidão o deslocamento vertical da base da duna. Observase que o modelo não reproduz subida da base da duna a partir do nível da água (z igual a zero), o que evidencia falta de realismo na formulação matemática do processo de avalanche. Relativamente à evolução da parte submersa do perfil observa-se que o modelo XBeach tende a aproximar o declive do perfil submerso do declive observado durante a experiência. Contudo, observa-se que o modelo não reproduz a barra submersa que se observa para valores de x entre 185 e 192 m. Observa-se ainda que o modelo subestima a extensão da zona de acumulação da areia transportada da face da duna, no entanto, tal dever-se-á ao facto do volume de erosão ser ligeiramente subestimado pelo modelo.

Ao primeiro intervalo de medição do perfil experimental (após 0,1 hora) o indicador de impacto volume de erosão simulado com o modelo XBeach e observado é praticamente igual. Com o decorrer da experiência, o modelo passa a subestimar o volume de erosão e a diferença entre o valor observado e numérico cresce (Figura 6a). No final da experiência o volume de erosão simulado é aproximadamente 75% do volume observado. Os indicadores de impacto recuo da duna (ao nível da água) e recuo do topo da duna evidenciam que a taxa de recuo (da base) da duna é semelhante à taxa de recuo do topo da duna e que tal não se verifica nos resultados numéricos (Figuras 6b-c). A falta de concordância entre os resultados numéricos e experimentais do indicador recuo da duna, que é significativamente maior do que a falta de concordância entre os resultados numéricos e experimentais do indicador recuo do topo da duna, deve-se ao facto do modelo não reproduzir correctamente o processo de avalanche, conforme já referido. A evolução do indicador de erro BSS mostra que o desempenho do modelo XBeach é mau no início da experiência mas torna-se bom no segundo intervalo do teste e assim permanece ao longo da experiência

A comparação da evolução do perfil experimental com a evolução dos perfis numéricos obtidos com o modelo Litprof para ambas as teorias de onda demonstra que o modelo com os parâmetros por defeito não simula o processo de erosão da duna. Considera-se por isso que dos modelos Xbeach e Litprof aquele com melhor desempenho com os parâmetros por defeito é o modelo XBeach.

4.3. Calibração

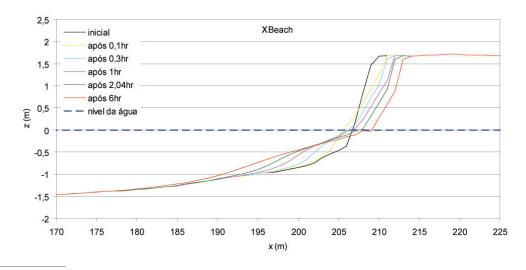
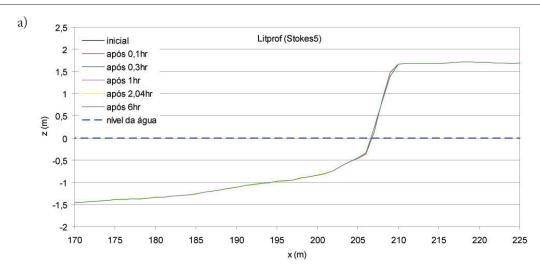

Testaram-se os parâmetros de calibração para cada um dos modelos, tendo como base os parâmetros por defeito. Neste processo, fez-se variar um parâmetro de cada vez mantendo os outros constantes. Apresentam-se os resultados dos testes efectuados. Posteriormente faz-se a avaliação do desempenho dos modelos XBeach e Litprof com base na comparação dos dois modelos para os melhores resultados obtidos após calibração.

Tabela 2. Parâmetros por defeito no modelo XBeach.

Table 2. Default parameters in the XBeach model.

	Parâmetro ¹	Descrição [unidades]	Valor por defeito
	break	Opção formulação rebentação (3="Roelvink2") [-]	3
	wci	Opção interacção onda corrente [-]	0
	roller	Opção modelo de turbulência superficial [-]	1
	beta	Coeficiente do declive do rolo no modelo de turbulência superficial (>0,05 e < 0,3) [-]	0,1
	gamma	Parâmetro de rebentação na formulação de Baldock ou Roelvink [-]	0,55
	gammax	Razão máxima altura onda/profundidade (Hrms/hmax) [-]	2
	alpha	Coeficiente de dissipação da onda [-]	1
	delta	Fracção da altura de onda a adicionar à profundidade [-]	0
ında	n	Potencia no modelo de dissipação de Roelvink [-]	10
s de c	scheme	Opção esquema numérico para equação acção da onda (1=Upwind; 2=Lax Wendroff) [-]	2
Condições de onda	lws	Opção ondas infragravíticas (0=não;1=sim) [-]	0
Con	instat	Grupos de onda gerados com parâmetros espectrais [-]	4
	С	Coeficiente de Chezy [m ^{1/2} /s]	65
	nuh	Viscosidade horizontal [m²/s]	0,1
s de to	nuhfac	Coeficiente de calibração da viscosidade horizontal do modelo de Battjes [-]	1
Condições de escoamento	eps	Profundidade mínima para inundação [m]	0,001
Con	hmin	Profundidade mínima para cálculo da velocidade da corrente de retorno [m]	0,05
	hswitch	Profundidade mínima (na interface de wetslp para dryslp) [m]	0,1
	wetslp	Declive crítico de avalanche submersa [-]	0,3
	dryslp	Declive crítico de avalanche emersa [-]	1
orte e	morfac	Factor morfológico [-]	1
Condições de transporte e morfodinâmica	dico	Coeficiente de dispersão horizontal [m²/s]	1
Condições de tr morfodinâmica	facsl	Factor declive na formulação do transporte de sedimentos [-]	1,6
ndiçóe Fodin	turb	Opção cálculo concentração sedimentar de equilíbrio [-]	2
Cor	facua	Opção de assimetria de ondas curtas [-]	0
	CFL	Máximo número de Courant para estimar o passo de cálculo automaticamente [-]	0,9
Condições numéricas			
	order	Geração de ondas (1=1ª ordem; 2=2ª ordem) [-]	1
ıteira	front	Condição fronteira lado mar (0=condição geração-absorção, em 1D) [-]	0
s fron	back	Condição fronteira lado terra (2=condição geração-absorção, em 2D) [-]	2
Condições fronteira	left	Condição fronteira lateral esquerda (0=Newmann) [-]	0
Con	right	Condição fronteira lateral direita (0=Newmann) [-]	0

¹ designação de acordo com as variáveis introduzidas no modelo



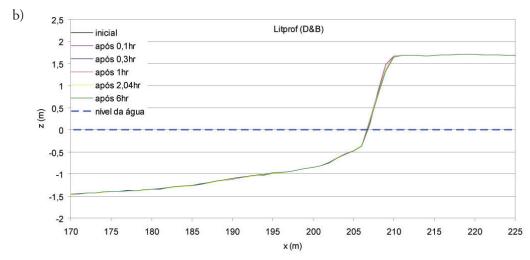
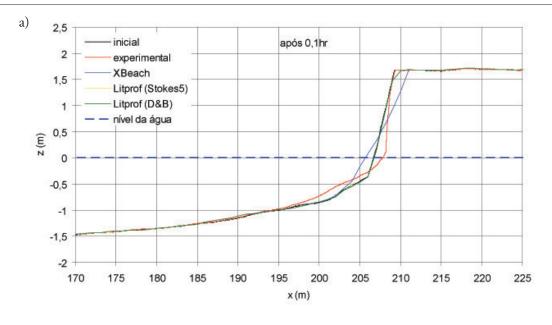

Figura 3. Resultados numéricos do modelo XBeach com parâmetros por defeito à escala laboratorial. *Figure 3.* Numerical results of the Xbeach model with the default parameters at laboratory scale.

Tabela 3. Parâmetros por defeito no modelo Litprof. *Table 3. Default parameters in the Litprof model.*

	Parâmetro ¹	Descrição [unidades]	Valor por defeito
olub	C1	Parâmetro de descrição das rugas de fundo [-]	0,1
	C2	Parâmetro de descrição das rugas de fundo [-]	2
e (Mó	C3	Parâmetro de descrição das rugas de fundo [-]	16
sporte	C4	Parâmetro de descrição das rugas de fundo [-]	3
e tran	θ_c	Parâmetro crítico de Shields [-]	0,045
ções d ABL)	Convective terms	Opção inclusão da corrente de fundo (streaming) [-]	included
Condições de transporte (Módulo PRFTABL)	C_b	Opção de cálculo da concentração de fundo (modelo determinístico de Engelund and Fredsøe (1976) ou empírico de Zyserman e Fredsoe (1994)) [-]	deterministic
Condições de onda	γ_1	Máxima razão entre a altura e o comprimento de onda (H/L) [-]	0,88
	γ_2	Máxima razão entre a altura de onda e a profundidade (H/h) [-]	0,6
	β	Parâmetro empírico do modelo de turbulência superficial de Dally e Brown (1995) (>0,1 e <0,2) [-]	0,15
Condições de morfodinâmica	Maximum Morphological Timestep	Limite máximo do intervalo de tempo entre actualizações da batimetria, sendo o passo de cálculo do estimado automaticamente [s]	1800
	Maximum Angle of Bed Slope	Máximo declive de fundo antes de avalanche submersa [°]	30
	α _{scale} or scale parameter	Factor de transferência de momento transversal (afecta a forma da barra submersa) [-]	1
	Clay layer	Opção de inclusão de um fundo rígido abaixo de determinado nível (ao qual pode ocorrer acumulação mas não erosão) [-]	exclude
Condic	Energy loss due to bed friction	Opção de inclusão de dissipação de energia por atrito de fundo segundo o modelo de Fredsøe e Deigaard (1992) [-]	include


¹ designação de acordo com a nomenclatura das variáveis na interface do modelo

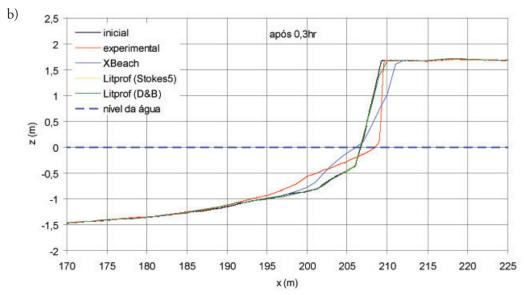


Figura 4. Resultados numéricos do modelo Litprof para as teorias de onda a) Stokes5 e b) D&B, com parâmetros por defeito, à escala laboratorial.

Figure 4. Numerical results of the Litprof model for the wave theories a) Stokes 5 and b) D&B, with the default parameters, at laboratory scale.

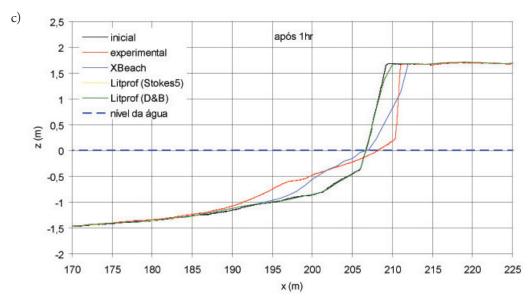
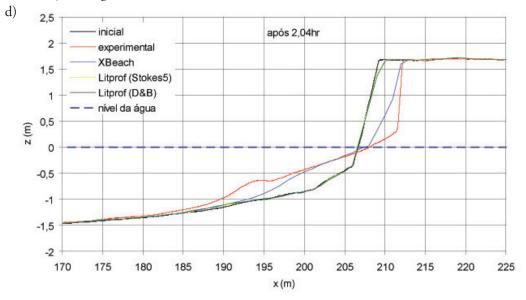
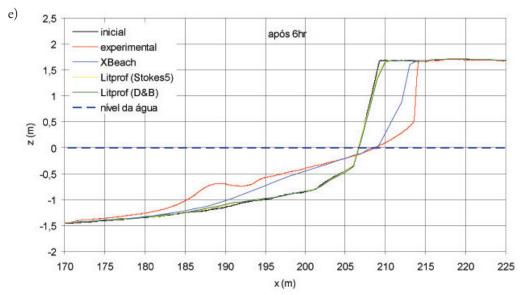




Figura 5. Continua na próxima página

Figure 5. Continues in the next page.

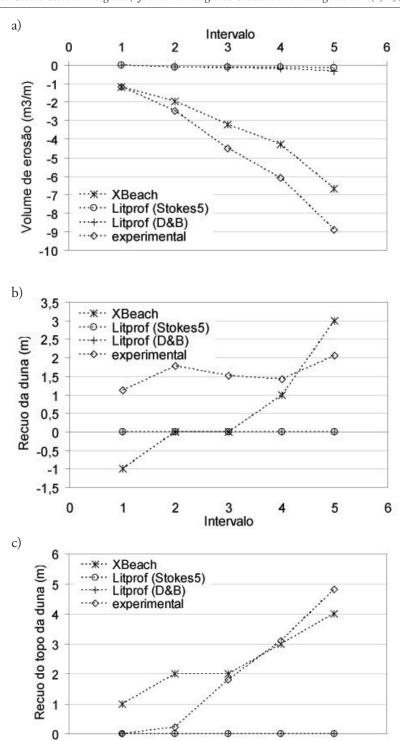

Continuação da Figura 5.

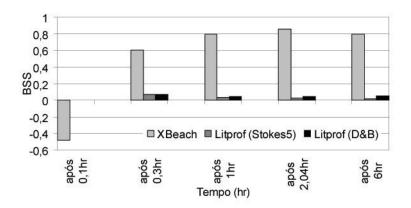
Figura 5. Resultados numéricos dos modelos XBeach e Litprof (para as teorias de onda Stokes5 e D&B) com parâmetros por defeitos, à escala laboratorial, ao final de 0.1, 0.3, 2.04 e 6 horas.

Figure 5. Numerical results of the XBeach and Litprof models (for the wave theories Stokes5 and D&B) with the default parameters, at laboratory scale, after 0.1, 0.3, 2.04 and 6 hours.

Figura 6. Indicadores de impacto para os modelos XBeach e Litprof (para as teorias de onda Stokes5 e D&B) com parâmetros por defeito: a) Volume de erosão, b) Recuo da duna e c) Recuo do topo da duna.

Intervalo

5


6

2

0

1

Figure 6. Impact indicators for the XBeach and Litprof models (for the wave theories Stokes5 and D&B) with the default parameters: a) Erosion volume, b) Dune retreat and c) Retreat of the top of the dune.

Figura 7. Indicador de erro BSS para os modelos XBeach e Litprof (para as teorias de onda Stokes5 e D&B) com parâmetros por defeito.

Figure 7. BSS error indicator for the XBeach and Litprof models (for the wave theories Stokes5 and D&B) with default parameters.

4.3.1. Modelo XBeach

A identificação dos parâmetros de calibração no modelo XBeach é um tema bastante importante, do qual depende o desempenho do modelo. No entanto, verifica-se que ainda não existe suficiente experiência sobre a aplicação do modelo de forma a apontar com clareza quais os parâmetros, de entre um grande número, a testar. Também por isso, a realização deste estudo é de grande importância.

Para identificar os parâmetros de calibração procurou-se numa primeira fase seleccionar os parâmetros considerados em casos anteriores de aplicação do modelo. Roelvink et al. (2009) relatam o maior número de casos de aplicação do modelo conhecidos, no entanto, não esclarecem sobre o processo de calibração. Das aplicações do modelo publicadas, a que descreve uma análise sobre alguns dos parâmetros de calibração utilizados é a de Vousdoukas et al. (2011), para um caso real de praia reflectiva. Os autores salientam que os parâmetros com maior resposta morfológica foram lws, facua e wetslp. Numa outra aplicação, Branderburg (2010), sem detalhar sobre o processo de calibração, recomenda parâmetros de calibração do modelo XBeach quando aplicado em modelos experimentais de pequena escala. O autor recomenda o teste aos parâmetros hmin, eps, turb, morfac, wetslp, hswitch, dzmax e Tsmin. Num outro caso de erosão dunar (testado pela autora, mas não publicado), o modelo mostrou-se sensível aos parâmetros dryslp, lws e hswitch.

Neste estudo, tendo em conta os trabalhos acima mencionados e após analisada pormenorizadamente a formulação do modelo e respectivos parâmetros (recomendase a análise de Roelvink *et al.*, 2010), testaram-se os parâmetros: *beta, break, facsl, facua, gammax, hmin, hswitch,*

lws, turb, wetsl, dryslp e order. Testou-se o modelo para os valores: 0,2 de beta, 1, 2 e 4 de break, 0,8 de facsl, 1 de facua, 0,5 de gammax, 0,001 de hmin, 0,01 e 1 de hswitch, 1 de lws, 0 e 1 de turb, 0,15 e 0,6 de wetslp, 2 de dryslp e 2 de order. Fez-se variar cada um destes parâmetros de cada vez relativamente à situação default (com os parâmetros por defeito).

Os resultados numéricos ao final de 6 horas (Figuras 8a-l) mostram que os parâmetros mais influentes na evolução morfológica para este caso de estudo são beta, break, facua, gammax, hswitch, lws e wetslp. Os parâmetros facsl, hmin, turb, dryslp e order influenciaram muito pouco os resultados obtidos com os parâmetros por defeito. Dos parâmetros mais influentes na evolução da geometria do perfil, os parâmetros lws e wetslp foram aqueles que conferiram ao perfil final uma geometria mais próxima da configuração observada (Figuras 8h e 8j, respectivamente). Os resultados obtidos para o indicador de erro BSS (Figura 9) evidenciam que o melhor desempenho, classificado como excelente (de acordo com a Tabela 1), foi obtido com alteração do parâmetro *lws* de 0 (por defeito) para 1 e que o segundo melhor desempenho foi obtido com a alteração do parâmetro wetslp de 0,3 (por defeito) para 0,15. Uma vez que a alteração morfológica alcançada com a modificação do parâmetro lws permitiu melhorar a previsão de duas características fundamentais sob o ponto de vista da engenharia que são o recuo do topo da duna e o limite da extensão da zona activa (onde se observou a formação da barra submersa durante a experiência), considera-se que este parâmetro é de grande relevância na simulação da evolução da erosão de dunas com o modelo XBeach.

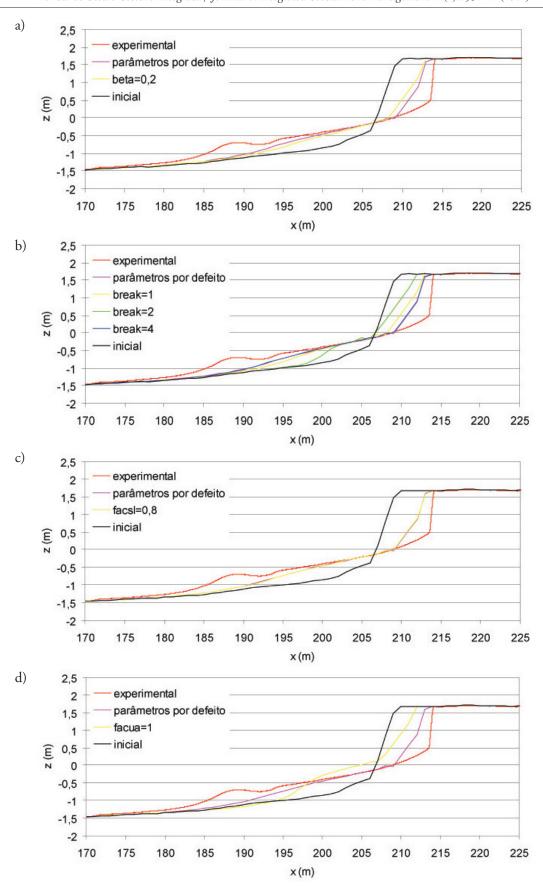


Figura 8. Continua na próxima página Figure 8. Continues in the next page.

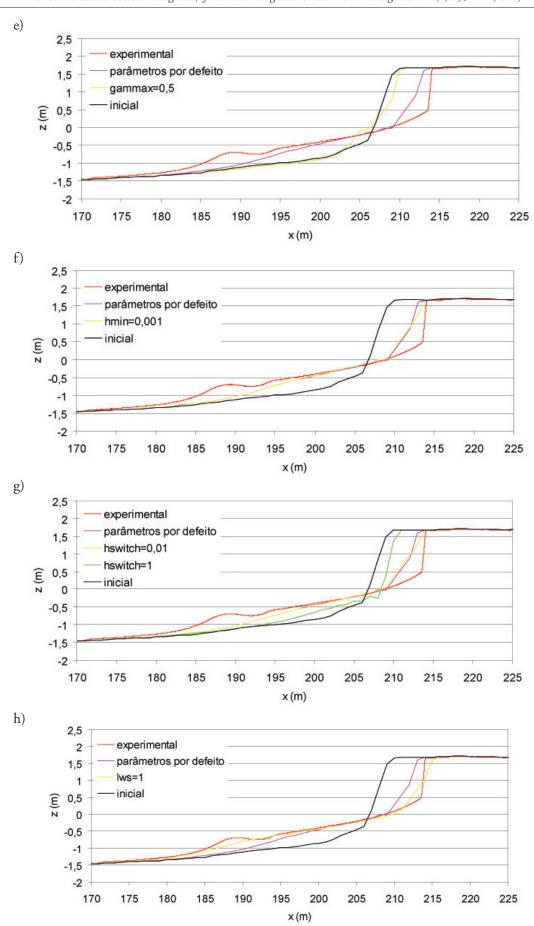


Figura 8. Continua na próxima página Figure 8. Continues in the next page.

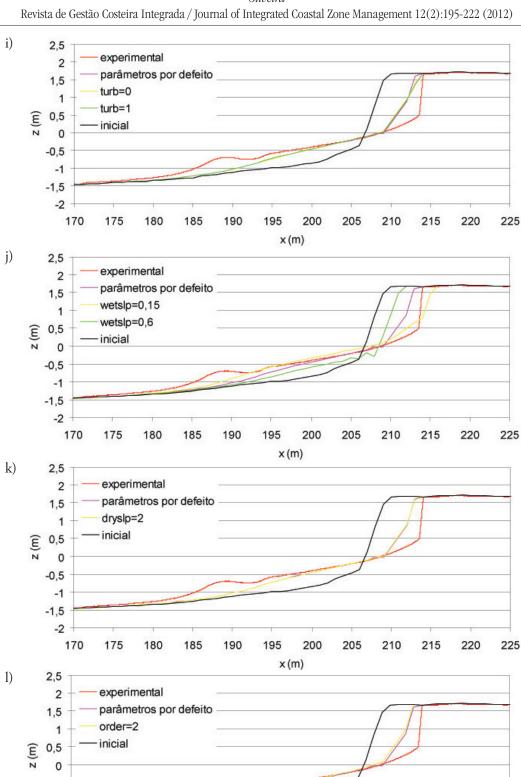


Figura 8. Figura 8 - Resultados do modelo XBeach, à escala laboratorial, ao final de 6 horas. Teste aos parâmetros de calibração a) beta, b) break, c) facsl, d) facua, e) gammax, f) hmin, g) hswitch, h) lws, i) turb, j) wetslp, k) dryslp e l) order.

195

x (m)

190

200

205

210

215

220

225

-0,5 -1 -1,5 -2

170

175

180

185

Figure 8. Results of the XBeach model, at laboratory scale, after 6 hours. Test of the calibration parameters a) beta, b) break, c) facsl, d) facua, e) gammax, f) hmin, g) hswitch, h) lws, i) turb, j) wetslp, k) dryslp and l) order.

Oliveira

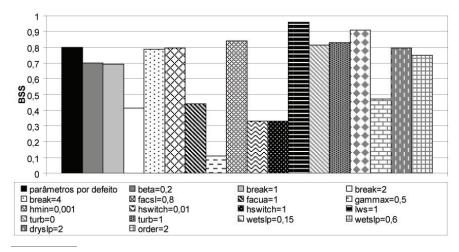


Figura 9. Indicador de erro BSS para os testes de calibração do modelo XBeach.

Figure 9. BSS error indicator for the calibration tests of the XBeach model.

4.3.2. Modelo Litprof

Neste modelo, os principais parâmetros de calibração são os parâmetros de rebentação da onda e o parâmetro de escala. Da comparação dos parâmetros por defeito comuns aos dois modelos, verificou-se que o modelo XBeach é menos tolerante no que respeita ao máximo declive de fundo para cálculo da avalanche submersa. XBeach considera o declive crítico de avalanche submersa (wetslp) igual 0,3 (Tabela 2) e o modelo Litprof considera o máximo ângulo de fundo submerso igual a 30° (Tabela 3), que corresponde ao valor 0,6 do parâmetro wetslp do modelo XBeach. Assim, testaram-se: os parâmetro de rebentação γ_1 e γ_2 , o parâmetro de escala $\alpha_{\textit{scale}}$ e o máximo ângulo de fundo submerso estável (Maximum Angle of Bed *Slope*). Os parâmetros γ_1 e γ_2 são considerados na estimativa da máxima altura de onda, $H_{\mbox{\tiny max}}$, que por sua vez é necessária para estimar a energia dissipada segundo Battjes e Janssen (1978). Eles são considerados na formulação seguinte

$$H_{max} = \frac{\gamma_1}{\gamma_2} \tanh\left(\frac{\gamma_2 kh}{\gamma_1}\right) \tag{36}$$

onde k é o número de onda e h a profundidade. O parâmetro de rebentação γ₁ descreve a máxima declividade da onda, H/L. O parâmetro de rebentação γ, é, segundo Battjes e Stive (1984), calculado da seguinte forma

$$\gamma_2 = 0.5 + 0.4 \tanh(33s_0) \tag{37}$$

onde s_0 é o declive de onda ao largo, H/L_0 , e L_0 é o

comprimento de onda ao largo. O parâmetro α_{scale} é um coeficiente de difusão horizontal que afecta a forma de desenvolvimento das barras (DHI, 2008). Fez-se variar cada um destes parâmetros de cada vez relativamente à situação default (com os parâmetros por defeito). Testou-se o modelo para os valores: 0,75 e 0,95 de γ_1 , 0,8, 0,9 e 1,5 de γ_2 , 0,8 e 1,2 de α_{scale} , e 10 e 20 de Maximum Angle of Bed Slope.

Os resultados numéricos ao final de 6 horas mostram que a variação dos parâmetros $\gamma_1,~\gamma_2$ e α_{scale} não causa qualquer alteração relevante na evolução morfológica do perfil, à semelhança dos resultados obtidos com os parâmetros por defeito, para ambas as teorias de onda aplicadas (Figura 10a-c). O indicador de erro BSS para os testes de calibração do modelo Litprof para as duas teorias de onda pode ser visto na Figura 12a-c. A diminuição do máximo ângulo de fundo antes de avalanche submersa (Maximum Angle of Bed Slope) causa erosão da face da duna (Figura 10d), pois limitando o máximo declive de fundo é acelerado o processo de instabilidade e consequente erosão na zona da base da duna. Contudo, a geometria da duna não é correctamente reproduzida. Apesar do recuo do topo da duna estimado ser muito próximo do observado, o declive da face é bastante mais suave do que o declive observado o que faz com que o modelo Litprof reproduza avanço da duna ao nível da água (para z igual a zero) enquanto no perfil experimental se observa recuo. O indicador de erro BSS para os testes de calibração do modelo Litprof com este parâmetro, para as duas teorias de onda, pode ser visto na Figura 12d. Concluiu-se que a falta de similaridade entre os resultados numéricos obtidos com o modelo Litprof e os resultados experimentais deve-se ao facto do modelo não abordar correctamente o processo de avalanche em zona seca nem considerar a acção de ondas longas.

Dados os resultados obtidos nos testes de calibração, testou—se ainda o modelo à variação dos parâmetros γ_2 e *Maximum Angle of Bed Slope* combinados, na expectativa de que a alteração do perfil alcançada através da deposição da areia erodida da face da duna (à custa da redução do *Maximum Angle of Bed Slope* para 10°) causasse um aumento do transporte para maiores profundidades no caso de se fazer variar o parâmetro γ_2 (máxima razão entre a altura de onda e a profundidade, H/h). Por isso, realizaram—se mais dois testes do modelo Litprof, considerando o valor de *Maximum Angle of Bed Slope* igual a 10° e os valores de γ_2 iguais a 0,9 e 1,5. Para γ_2 igual a 0,9 não se verifica melhoria do resultado (Figura 11), provavelmente porque a extensão da zona de acumulação do volume extraído da face da duna é insuficiente para causar alteração da posição de rebentação das ondas e

aumentar o transporte para maiores profundidades por acção da corrente de retorno. No entanto, para γ_2 igual a 1,5 verifica-se que aumenta ligeiramente o volume de areia extraído da face da duna e que a acumulação deste na parte submersa do perfil estende-se até maiores profundidades com tendência para formação de uma barra pouco pronunciada. O indicador de erro BSS para estes testes é apresentado na Figura 13.

Concluiu-se que o parâmetro *Maximum Angle of Bed Slope* foi o mais eficaz na calibração do modelo Litprof e que a teoria de onda não é relevante na evolução do perfil para este caso de estudo. O melhor desempenho do modelo Litprof foi alcançado para a alteração dos parâmetros por defeito resultante da combinação do parâmetro *Maximum Angle of Bed Slope* igual a 10° com o parâmetro γ_2 igual a 1.5.

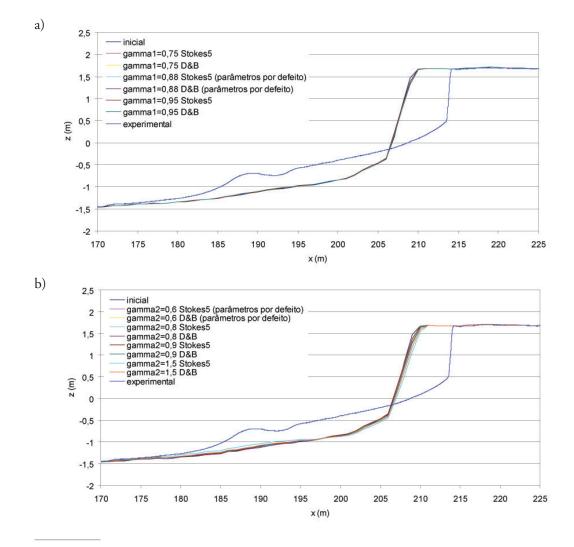
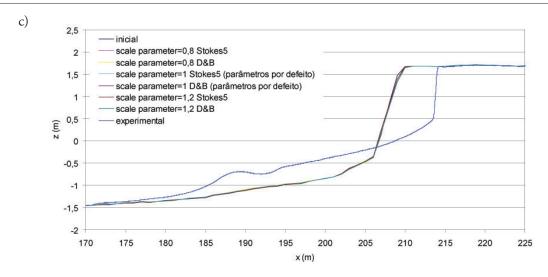
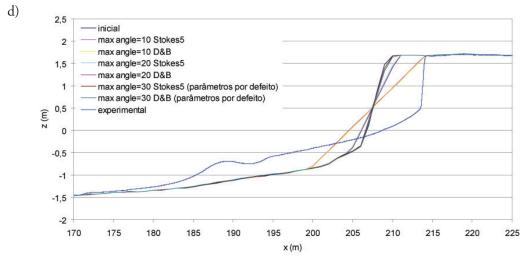
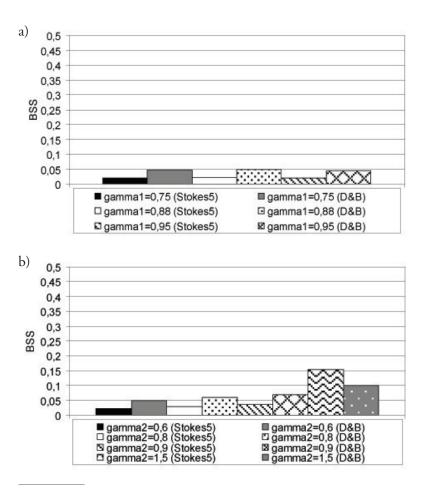
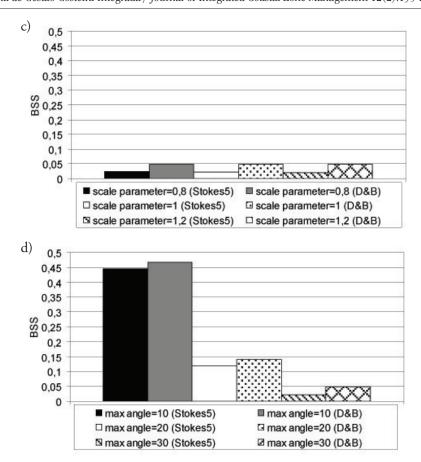




Figura 10. Continua na próxima página Figure 10 Continues in the next page.

Figura 10. Resultados do modelo Litprof (para as teorias de onda Stokes5 e D&B), à escala laboratorial, ao final de 6 horas. Teste aos parâmetros de calibração a) γ_1 , b) γ_2 , c) α_{scale} e d) *Maximum Angle of Bed Slope.* **Figure 10.** Results of the Litprof model (for the wave theories Stokes5 and D&B), at laboratory scale, after 6 hours. Test of the calibration parameters a) γ_1 , b) γ_2 , c) α_{scale} and d) Maximum Angle of Bed Slope.

Figura 11. Resultados do modelo Litprof (para as teorias de onda Stokes5 e D&B), à escala laboratorial, ao final de 6 horas. Teste aos parâmetros de calibração γ_2 e Maximum Angle of Bed Slope combinados. **Figure 11.** Results of the Litprof model (for the wave theories Stokes5 and D&B), at laboratory scale, after 6 hours. Test of the calibration parameters γ_2 and Maximum Angle of Bed Slope combined.

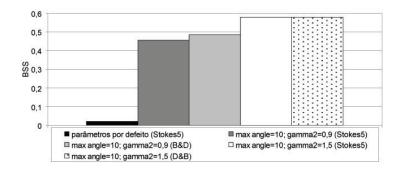

Figura 12. Continua na próxima página Figure 12 Continues in the next page.

Figura 12. Indicador de erro BSS para os testes de calibração do modelo Litprof (para as teorias de onda Stokes5 e D&B). Parâmetros de calibração: a) γ_1 , b) γ_2 , c) α_{codr} e d) *Maximum Angle of Bed Slope*.

Figure 12. BSS indicator error for the calibration tests of the Litprof model (for the wave theories Stokes 5 and D&B). Calibration parameters: a) γ_1 , b) γ_2 , c) α_{scale} and d) Maximum Angle of Bed Slope.

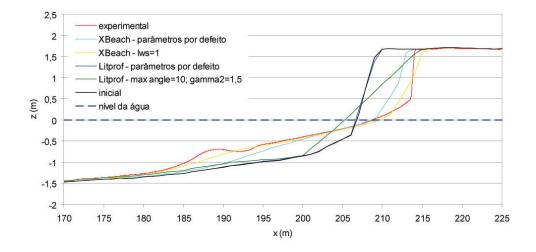
Figura 13. Indicador de erro BSS para o teste de calibração do modelo Litprof (para as teorias de onda Stokes5 e D&B) com os parâmetros γ_2 e *Maximum Angle of Bed Slope* combinados.

Figure 13. BSS indicator error for the calibration test of the Litprof model (for the wave theories Stokes5 and D&B) with the parameters γ_2 and *Maximum Angle of Bed Slope* combined.

4.3.3. Comparação

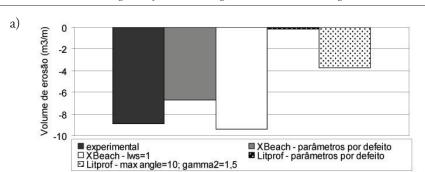
Compararam-se as simulações do modelo XBeach e Litprof (para a teoria de onda Stokes5, uma vez que a teoria de onda não se mostrou influente nos resultados) após calibração (e também de ambos os modelos com os parâmetros por defeito). Para cada um dos modelos considerou-se a aplicação com a qual se obteve o melhor desempenho do modelo, i.e., o modelo XBeach com o parâmetro *lws* igual a 1 e o modelo Litprof com os parâmetros *Maximum Angle of Bed Slope* igual a 10° e γ_2 igual a 1,5.

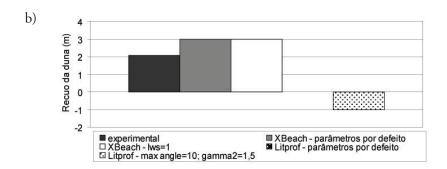
Os resultados numéricos obtidos ao final de 6 horas (à escala laboratorial) mostram que ambos os modelos calibrados foram capazes de reproduzir erosão da duna, sendo o modelo XBeach que melhor reproduziu a configuração do perfil experimental (Figura 14). O modelo Litprof, apesar de ter reproduzido o recuo do topo da duna correctamente (Figuras 14 e 15c) e ter simulado a formação de uma barra submersa na posição observada experimentalmente (Figura 14), simulou incorrectamente o volume de erosão (cerca de metade do observado) e o declive da duna. Consequentemente, o modelo gerou um avanço da duna ao nível do mar em vez de recuo (Figura 15b). Assim, em problemas de engenharia, em que para além de se pretender estimar com precisão o volume de areia extraído da face da duna também se pretende estar do lado da segurança, recomenda-se a aplicação do modelo XBeach calibrado.


O desempenho do modelo XBeach melhorou consideravelmente após calibração: não só a configuração do perfil é mais concordante com a configuração experimental, quer na face da duna quer na parte submersa do perfil (Figura 14), como também os indicadores de impacto e de erro assim o demonstram (Figuras 15a-c e 16). Salienta-se o resultado

do indicador de erro BSS para o modelo XBeach calibrado que classifica o desempenho do modelo como excelente, conforme classificação da Tabela 1.

5. CONCLUSÕES E RECOMENDAÇÕES


Testaram-se os modelos morfodinâmicos XBeach e Litprof na erosão de dunas durante tempestades marítimas. O caso de verificação tratou-se de um perfil de praia arenoso com uma duna bastante robusta testado em canal de grande escala (1:6) de laboratório. Numa primeira fase testaram-se os modelos com os parâmetros por defeito (*standard set of parameter settings*). Numa segunda fase calibraram-se os modelos, ajustando os parâmetros de forma a melhorar o seu desempenho, i.e., a similaridade com os resultados observados. Em cada uma das fases compararam-se os resultados de ambos, sempre com base nos resultados observados durante a evolução do perfil experimental. Avaliou-se o desempenho dos modelos na previsão da evolução do perfil com base em indicadores de impacto (volume de erosão, recuo da duna e recuo do topo da duna) e no indicador de erro, BSS.


A aplicação do modelo XBeach com os parâmetros por defeito mostrou que o modelo simulou de forma razoável a acção erosiva das ondas na quase totalidade do perfil, sendo as maiores diferenças relativamente aos resultados experimentais verificadas no declive da duna, que se observou quase vertical durante a experiência laboratorial e o modelo reproduziu mais suave, e na barra submersa formada na extremidade da zona activa do perfil, que o modelo não reproduziu. O modelo reproduziu correctamente o recuo do topo da duna mas não o recuo observado ao nível da água. Consequentemente, o volume de erosão simulado foi de 75% do valor observado. Tal facto evidencia falta de realismo na formulação matemática

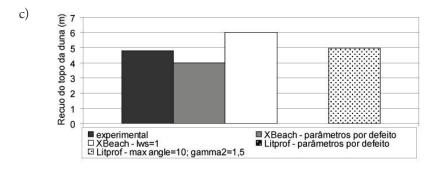


Figura 14. Resultados dos modelos XBeach e Litprof (Stokes5) com parâmetros por defeitos e após calibração, à escala laboratorial.

Figure 14. Results of the XBeach and Litprof (Stokes 5) models with the default parameters and after calibration, at laboratory scale.

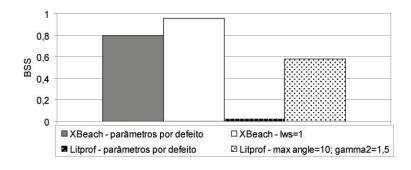


Figura 15. Indicadores de impacto para os modelos XBeach e Litprof (Stokes5) com parâmetros por defeito e após calibração: a) Volume de erosão, b) Recuo da duna e c) Recuo do topo da duna.

Figure 15. Impact indicators for the XBeach and Litprof (Stokes5) models with the defaults parameters and after calibration: a) Erosion volume, b) Dune retreat and c) Top of the dune retreat.

Figura 16. Indicador de erro BSS para os modelos XBeach e Litprof (Stokes5) com parâmetros por defeito e após calibração.

Figure 16. BSS error indicator for the XBeach and Litprof (Stokes5) models with the default parameters and after calibration.

do processo de avalanche. Relativamente à parte submersa do perfil, admite-se que o facto do modelo subestimar a extensão da zona de acumulação da areia transportada da face da duna se deve em grande parte ao facto do volume de erosão ser subestimado pelo modelo e não necessariamente a falta de realismo da formulação de transporte. Assim, numa aplicação de engenharia, em que importa não só a precisão como também estar do lado da segurança, recomenda-se precaução na aplicação do modelo XBeach com os parâmetros por defeito para previsão da erosão de dunas.

A aplicação do modelo Litprof com os parâmetros por defeito mostrou que o modelo não reproduz o processo de erosão da duna. Considera-se por isso que dos modelos Xbeach e Litprof aquele com melhor desempenho com os parâmetros por defeito é o modelo XBeach.

Discutiram-se, sugeriram-se e testaram-se doze parâmetros de calibração do modelo XBeach, que foram: beta, break, facsl, facua, gammax, hmin, hswitch, lws, turb, wetslp, dryslp e order. Fez-se variar cada um destes parâmetros de cada vez relativamente à situação default (com os parâmetros por defeito) e concluiu-se que os parâmetros mais influentes na evolução morfológica para este caso de estudo foram beta, break, facua, gammax, hswitch, lws e wetslp. Destes, os parâmetros lws e wetslp foram aqueles que conferiram ao perfil final uma geometria mais próxima da configuração observada. Os resultados obtidos para o indicador de erro BSS evidenciam que o melhor desempenho foi obtido com alteração do parâmetro lws de 0 (por defeito) para 1 e que o segundo melhor desempenho foi obtido com a alteração do parâmetro wetslp de 0,3 (por defeito) para 0,15, sendo a ambos atribuída a classificação de excelente. Uma vez que a alteração morfológica alcançada com a modificação do parâmetro lws permitiu melhorar a previsão das duas características fundamentais sob o ponto de vista da engenharia que são o recuo do topo da duna e o limite da extensão da zona activa (onde se observou a formação da barra submersa durante a experiência), considera-se que este parâmetro é de grande relevância na simulação da evolução da erosão de dunas com o modelo XBeach.

Testaram-se quatro parâmetros de calibração do modelo Litprof para cada teoria de onda. Eles foram: os parâmetro de rebentação γ_1 e γ_2 , o parâmetro de escala α_{scale} e o máximo ângulo de fundo submerso (*Maximum Angle of Bed Slope*). Fez-se variar cada um destes parâmetros de cada vez relativamente à situação default (com os parâmetros por defeito) e concluiu-se que os três primeiros parâmetros não afectam a evolução do perfil mas apenas o parâmetro Maximum Angle of Bed Slope é eficaz na calibração do modelo, pois causa erosão da duna. Concluiu-se que a falta de similaridade entre os resultados numéricos obtidos com o modelo Litprof e os resultados experimentais deve-se ao facto do modelo não abordar correctamente o processo de avalanche em zona seca nem considerar a acção de ondas longas. Concluiu-se que apenas limitando o máximo declive de fundo, e desta forma acelerando o processo de instabilidade do fundo, é possível causar erosão na base da duna com o modelo Litprof. Com base nesta conclusão, testou-se o modelo à variação dos parâmetros γ_2 e *Maximum* Angle of Bed Slope combinados, na expectativa de que a alteração do perfil alcançada através da deposição da areia erodida da face da duna (à custa da redução do Maximum Angle of Bed Slope) causasse um aumento do transporte para maiores profundidades no caso de se fazer variar o parâmetro γ_2 (máxima razão entre a altura de onda e a profundidade, H/h). Foi com esta combinação de parâmetros de calibração que se obteve o melhor desempenho do modelo Litprof. No seu melhor desempenho, classificado como razoável através do indicador de erro BSS, o modelo Litprof reproduziu o recuo do topo da duna correctamente, simulou a formação de uma barra submersa na posição observada experimentalmente, simulou incorrectamente o volume de erosão (cerca de metade do observado) e o declive da duna, e consequentemente gerou um avanço da duna ao nível do mar em vez de recuo. Por este motivo, recomenda-se muita precaução na aplicação do modelo Litprof para previsão da erosão de dunas. Verificou-se também que a teoria de onda não foi relevante na evolução do perfil neste caso de estudo.

Da comparação dos modelos morfodinâmicos XBeach e Litprof nas duas fases, i.e., na fase de teste com os parâmetros por defeito e na fase de calibração, concluiu-se que foi o modelo Xbeach que apresentou o melhor desempenho neste caso de estudo. A execução deste estudo permitiu testar e ficar a conhecer a elevada capacidade do modelo XBeach e a razoável capacidade do modelo Litprof na previsão da erosão de dunas. Concluiu-se que o modelo XBeach tem um elevado potencial na avaliação e previsão da vulnerabilidade de dunas pois não só apresentou um excelente desempenho neste caso de estudo, como também, sendo um modelo aberto a futuro desenvolvimento por parte da comunidade científica, possibilita a alteração (introdução e/ou melhoria) do tratamento matemático dos processos físicos envolvidos na morfodinâmica costeira. Relativamente a este último potencial, acrescenta-se que este estudo permitiu deste já identificar o processo de avalanche como um processo cujo tratamento matemático deve ser melhorado para tornar as simulações do modelo mais realistas.

BIBLIOGRAFIA

Battjes, J.A.; Janssen, J.P.F.M. (1978) - Energy Loss and Set-Up due to Breaking of Random Waves. *Proceedings. 16th International Conference on Coastal Engineering*, pp.569-587, Hamburg, Germany.

Battjes, J.A.; Stive, M.J.F. (1984) - Calibration and verification of a dissipation model for random breaking waves. *Proceedings 19th International Conference on Coastal Engineering*, pp.649-660, Houston, Texas, U.S.A..

Brandenburg, P.G.F. (2010) - Scale dependency of dune erosion models. Performance assessment of the DUROS and XBeach models for various experiment scales. M.Sc. Thesis, 121 pp., University of Twente, The Netherlands. Não publicado.

Damgaard, J.; Dodd, N.; Hall, L.; Chesher, T. (2002) - Morphodynamic modelling of rip channel growth. *Coastal Engineering*, 45(3-4):199-221. DOI: 10.1016/S0378-3839(02)00034-0.

de Vries, J.S.M.v.T.; van Gent, M.R.A.; Walstra, D.J.R.; Reniers, A.J.H.M. (2008) - Analysis of dune erosion processes in large-scale flume experiments. *Coastal Engineering*, 55(12):1028-1040. DOI: 10.1016/j. coastaleng.2008.04.004.

- DHI (2008) *Profile development. LITPROF user guide.* 74pp, Danish Hydraulic Institute, Denmark.
- Doering, J.C.; Bowen, A.J. (1995) Parametrization of orbital velocity asymmetries of shoaling and breaking waves using bispectral analysis. *Coastal Engineering*, 26(1-2):15-33. DOI: 10.1016/0378-3839(95)00007-X.
- Feddersen, F.; Guza, R.T.; Elgar, S.; Herbers, T.C. (2000) Velocity moments in alongshore bottom shear stress parameterizations. *Journal of Geophysical Research*, 105(C4):8673-8688. DOI: 10.1029/2000JC900022.
- Fenton, J. (1985) A fifth-order Stokes theory for steady waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, Vol. 111: 216-234. DOI: 10.1061/(ASCE)0733-950X.
- Guza, R.T.; Thornton, E.B. (1982) Swash oscillations on a natural beach. *Journal of Geophysical Research*, 86(C5):4133-4137. DOI: 10.1029/JC087iC01p00483.
- Larson, M.; Kraus, N.C. (1989) SBEACH: Numerical model for simulating storm-induced change. Report 1. Empirical formulation and model development. 267 p, Technical report CERC-89-9, US Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, Vicksburg, MS, U.S.A, Não publicado.
- Nairn, R.B.; Roelvink, J.A.; Southgate, H.N. (1990) Transition zone width and implications for modelling surfzone hydrodynamics. *Proc. 22nd International Conference on Coastal Engineering*, pp.68-81, Delft, The Netherlands.
- Oliveira, F.S.B.F. (2001) Transporte Litoral perpendicular à costa. Relatório 1 Modelação Matemática da Hidrodinâmica e Transporte de Sedimentos na Zona Costeira. 39 p., Laboratório Nacional de Engenharia Civil, Lisboa, Portugal. Não publicado.
- Oliveira, F.S.B.F. (2011) Avaliação do modelo de erosão de praias e dunas XBeach. 26 p., Relatório 326/2011 NEC, Laboratório Nacional de Engenharia Civil, Lisboa, Portugal,. Não publicado.
- Phillips, O.M. (1977) The dynamics of the upper ocean. 2nd ed. 336p., Cambridge University Press, New York, NY, U.S.A. ISBN: 978-0521298018.
- Raubenheimer, B.; Guza, R.T. (1996) Observations and predictions of run-up. *Journal of Geophysical Research*, 101(C10):25575-25587. DOI: 10.1029/96JC02432.
- Reniers, A.J.H.M.; Roelvink, J.A.; Thornton, E.B. (2004a) Morphodynamic modelling of an embayed beach under wave group forcing. *Journal of Geophysical Research*, 109(C1):1-22. DOI: 10.1029/2002JC001586.
- Reniers, A.J.H.M.; Thornton, E.B.; Stanton, T.; Roelvink, J.A. (2004b) Vertical flow structure during Sandy Duck: observations and modelling. *Coastal Engineering*, 51(3):237-260. DOI: 10.1016/j.coastaleng.2004.02.001.
- Roelvink, D.; Reniers, A.; Dongeren, A.; Vries, J.T.; Lescinski, J.; McCall, R. (2010) XBeach model description and manual. 106 p., Report, June 21, 2010 version 6. Unesco-IHE Institute for Water Education, Deltares and Delft University of Technology, Delft, The Netherlands. Não publicado.
- Roelvink, D.; Reniers, A.; Dongeren, A.; Vries, J.T.; McCall, R.; Lescinski, J. (2009) Modelling storm impacts on beaches, dunes and barrier islands. *Coastal Engineering*, 56(11-12):1133-1152. DOI: 10.1016/j. coastaleng.2009.08.006.

- Roelvink, J.A. (1993) Dissipation in random wave groups incident on a beach. *Coastal Engineering*, 19(1-2):127-150. DOI: 10.1016/0378-3839(93)90021-Y.
- Roelvink, J.A.; van Kessel, T.; Alfageme, S.; Canizares, R. (2003) Modelling of barrier island response to storms. *Proceedings Coastal Sediments '03*, Clearwater, Florida, 17 pp. ISBN: 978-981-238-422-5(CD).
- Ruessink, B.G.; Miles, J.R.; Feddersen, F.; Guza, R.T.; Elgar, S. (2001) Modeling the alongshore current on barred beaches. *Journal of Geophysical Research*, 106(C10):22451-22463. DOI: 10.1029/2000JC000766.
- Sallanger, A.H. (2000) Storm impact scale for barrier islands. *Journal of Coastal Research* (ISSN 0749-0208.), 16(3):890-895, West Palm Beach, Florida, U.S.A.
- Soulsby, R.L. (1997) *Dynamics of Marine Sands*. 249pp, Ed. Thomas Telford, London, U.K. ISBN: 9780727725844.
- Soulsby, R.L.; Hamm, L.; Klopman, G.; Myrhaug, D.; Simons, R.R.; Thomas, G.P. (1993) Wave-current interaction within and outside the bottom boundary layer. *Coastal Engineering*, 21(1-3):41-69. DOI: 10.1016/0378-3839(93)90045-A.
- Stive, M.J.F.; Vriend, H.J. (1994) Shear stresses and mean flow in shoaling and breaking waves. *In:* Edge, B.L. (ed.), *Proceedings. 24th International Conference on Coastal Engineering*, pp.594-608, American Society of Civil Engineering, Kobe, Japan.
- Svendsen, I.A. (1984) Wave heights and set-up in a surf zone. *Coastal Engineering*, 8(4):303-329. DOI: 10.1016/0378-3839(84)90028-0.
- Tucker, M.J. (1954) Surfbeats: sea waves of 1 to 5 minutes' period. *Proceedings of the Royal Society of London*, Ser A 202:565-573. DOI: 10.1098/rspa.1950.0120.
- U.S. Army Corps of Engineers (1984) Shore Protection Manual. Department of the Army. Waterways Experiment Station, Corps of Engineers. Coastal Engineering Research Center. DOI: OL3001149M.
- van Rijn, L.C.; Walstra, D.J.R.; Grasmeijer, B.; Sutherland, J.; Pan, S.; Sierra, J.P. (2003) The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. *Coastal Engineering*, 47(3):295-327. DOI: 10.1016/S0378-3839(02)00120-5.
- Vellinga, P. (1986) Beach and dune erosion during storm surges. 169p., Ph.D. thesis Delft University of Technology. Delft, The Netherlands. Não publicado.
- Vousdoukas, M.I.; Almeida, L.P.; Ferreira, Ó. (2011) Modelling storm-induced beach morphological change in a meso-tidal, reflective beach using XBeach. *Journal of Coastal Research* (ISSN: 0749-0208) SI64:1916-1920. Szczecin, Poland.
- WL | Delft Hydraulics (2006) Dune erosion: Product 2: Large-scale model tests and dune erosion prediction method. 213p., Report H4357, Deft, The Netherlands. Não publicado.