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Abstract. The author establishes and uses stochastic simulators for self-thinned even-aged, and 
uneven-aged pure stands of Pinus pinaster Ait. In both types of simulators he considers several 
levels of environmental stochasticity. From the application of the simulator for even-aged 
stands he concludes that the values in the range –1.45 to –1.49, found in the literature, and 
obtained from empirical data, do not allow the definitive rejection of the 3/2 power law. The 
simulator for uneven-aged stands has a mechanism to mimic different degrees of homeostasis. 
The author performed several sets of runs with this model, for combinations of values of 
environmental variability and of homeostasis. He then presents and interprets his simulated 
data. The model for uneven-aged stands reveals ergodicity. The author formally characterizes 
the dynamics of the area per tree. 
Key words: area per tree; ergodicity; Pinus pinaster Ait.; self-thinned even-aged pure stands; 
self-thinned uneven-aged pure stands; stochastic simulators; 3/2 power law 
 
A Dinâmica Estocástica para Povoamentos Puros Auto-Desbastados. Uma Inquirição 
Simulatória 
Sumário. O autor estabelece e aplica simuladores estocásticos para povoamentos puros auto-
desbastados de Pinus pinaster Ait., tanto regulares como irregulares. Em ambos os casos 
considera diferentes níveis de estocacidade ambiental. Da utilização do simulador para os 
povoamentos regulares ele conclui que provavelmente valores entre –1.45 e –1.49, obtidos a 
partir de dados empíricos, não permitem uma rejeição definitiva da lei dos 3/2. O modelo para 
os povoamentos irregulares tem um mecanismo para simular vários graus de homeostasis do 
povoamento. Para várias combinações de valores de variabilidade ambiental e homeostasis ele 
empreendeu grupos de simulações, cujos resultados apresenta e interpreta. O modelo para os 
povoamentos irregulares revela ergodicidade. O autor faz a caracterização formal da dinâmica 
da área por árvore. 
Palavras-chave: área por árvore; ergodicidade; lei da potência dos 3/2; Pinus pinaster Ait; 
povoamentos puros auto-desbastados regulares; povoamentos puros auto-desbastados 
irregulares; simuladores estocásticos 
 
La Dynamique Aléatoire pour Peuplements Purs Auto-Eclaircis. Une Enquête avec 
Simulations  

Résumé. L'auteur établi et applique des simulateurs stochastiques pour les peuplements purs 
et auto-éclaircis de Pinus pinaster Ait., réguliers et irréguliers. Il conclue que probablement, les 
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valeurs de –1.45 à 1.48, obtenues à partir des données empiriques ne permettent pas le rejet 
définitif de la loi de l'exposant 3/2. Les simulateurs pour les peuplements irréguliers 
contiennent un mécanisme d'homéostasie contrôlable. L'auteur présente et interprète les 
résultats de différentes simulations avec divers niveaux stochastiques de l'environnement et 
d'homéostasie. Le modèle pour les peuplements irréguliers est ergodique. L'auteur fait une 
analyse formelle de la surface par arbre. 
Mots clés: loi de l'exposant 3/2 ; peuplements purs et auto-éclaircis; Pinus pinaster Ait; 
simulateur ergodique ; simulateur stochastique ; surface par arbre 
  
 
Introduction 

 
The theory I established for self-

thinned stands is a deterministic 
archetype of the presumed regularities 
evinced by the growth and structure of 
the same stands. The theory has the 
pretension to describe the way the self-
thinned stands would grow if their 
developments were deterministic, and 
not stochastic, as it occurs in nature. 

This deterministic conceptualisation 
accepts the following: 

- Self-thinned stands are complex 
entities, but there is simplicity that 
emerges from this intricacy. This 
situation allows the description of self-
thinned stands by simple equations 
(COHEN and STEWART, 1994). 

- The growth of individuals obeys to 
eco-physiological, chemical and physical 
constrictions. 

- The occupancy of the space by the 
population of trees of a self-thinned 
stands abides physical constraints. 

The main alterations that occur in 
self-thinned stands are caused by the 
growth of the individuals, and the 
induced reduction of their number. Tree 
growth obeys to general laws that affect 
the dynamics of their density. The former 
regularities can be represented by 
allometric equations. Relationships 
between the relative growth rates of the 
variables that measure the size of the 

individuals must exist. Also these 
relative growth rates must be related to 
the relative mortality rate (BARRETO, 
1995, 2002b). 

In a broader perspective, my theory 
converges to the main conceptions of 
James H. Brow, Brian J. Enquist, and 
Geoffrey B. West, that are explained, and 
illustrated in BROWN and WEST (2000). 

Given the previous explanation, it is 
justified to require that my theory be 
submitted to the test implicit in the 
following question: can the theory 
underpin a coherent stochastic simulation of 
the same stands? 

In this paper, I will attempt to satisfy 
this requirement in the case of self-
thinned even-aged pure stands (SEPS), 
and self-thinned uneven-aged pure 
stands (SUPS). 

To attain this scope: 
a) I must elaborate a conjecture of the 

mechanism of growth and self-thinning; 
b) Add stochasticity to it; 
c) Try to mimic the whole process 

with a simulator. 
The main purpose of this paper is to 

disclose my accomplishment of this 
undertaking.   

In my simulations, I will use SEPS and 
SUPS of Pinus pinaster Ait. (maritime 
pine, MP). MP is a pioneer species with 
fast initial growth, and short longevity, 
in the Mediterranean Basin, that occupies 
about forty per cent of the afforested area 
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of Portugal. 
My model for environmental 

stochasticity is of the type independent 
and identical distributed sequences. 

This paper is a revised, and enlarged 
version of BARRETO (2002c). 

 
The stochastic dynamics of SEPS 

 
The process of self-thinning in SEPS 

 
The mechanism of self-thinning in 

SEPS is conceptualized as follows: 
a) The dbh of the mean tree, in a small 

period of time, grows according to their 
Gompertzian pattern. 

b) The increased size of the mean tree 
is incompatible with the actual density, 
because the mean tree occupies more 
space; 

c) Self-thinning must actuate to 
reduce the area occupied by the trees to 
the area of the land where the stand is 
located (admitted to be one hectare, in 
this paper). 

The way this mechanism actuates is 
described in part II of method SB- 
-BARTHIN (BARRETO, 2001), and I will 
not repeat it, here. 

To bring stochasticity to the previous 
process, I make the final or asymptotic 
value, in the Gompertz equation related 
to the dbh of the mean tree, a stochastic 
variable.   

The basic procedure of simulation is 
the following one: 

 
Generate a random number  generate a 
final value of dbh  simulate the dbh growth 
of the mean tree  increase the stem volume 
of the mean tree  adjust the density to the 
new size of the mean tree 

  
 

The stochastic simulations 
 
For my simulative purposes, I 

consider a SEPS of MP, and I admit that 
the final value of the dbh has a 
lognormal distribution. At age 10, this 
SEPS is characterized as follows: 1943 
trees per hectare; mean dbh equal to 
14.32 cm; the mean tree volume is 
0.085684 m3.  

I will present two deterministic 
simulations, and two stochastic 
simulations. 

From here on, I will use the following 
notation: p= stand density, trees/ha; 
d=dbh of the mean tree, cm; v=stem 
volume of the mean tree, m3. 

Simulation A. This deterministic 
simulation uses only the Gompertz 
equations (model KHABA, (BARRETO, 
1990)) related to the forest variables. 

Simulation B. It is also a deterministic 
simulation. For comparative purposes, it 
applies the mechanism described in the 
previous sub-section, to the deterministic 
final value of the d.  

Simulation C. The final value of the 
dbh of the mean tree has the lognormal 
distribution (3.5582, 0.05). 

Simulation D. The final value of the 
dbh of the mean tree has the lognormal 
distribution (3.5582, 0.15). 

Now, I introduce pertinent informa-
tion about the numerical procedures 
used in these four simulations. 

In simulations A and B the final value 
of d, df is equal to 14.32/0.4076. In 
Simulation A, the final value of p, pf is 
equal to 1432/6.018; and the final value 
of v, vf is equal to 0.085684/0.0677. 

All four simulations use the following 
equations: 
d(t)=df 0.4076exp(-0.05(t-10)) (1) 
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v(t)=vf 0.0677exp(-0.05(t-10)) (2) 
Simulation A calculate p(t) as follows: 

p(t)=pf 6.018exp(-0.05(t-10)) (3) 
Simulation B, C, and D use the 

following algorithm: 
Calculate the environmental quality 

associated to the random value of df:: 
Q=0.5679289 df + 4.039238 (4) 

Calculate the constant M: 
M=0.000083781 Q2 – 0.0009141 Q +0.009827 (5) 

3 : Estimate vf as follows: 
vf=M df (6) 
and after use eq. (2). 

Now, the following equation is used 
to estimate the area occupied by the 
mean tree after growth (m2, BARRETO, 
2001, eq. (9)): 
A=10.427529 (d/20.38)2 (7) 

The new density is given by: 
p=104/A (8) 

The values associated to Simulations 
A-D are exhibited in table 1. 

The values of b were obtained from 
the fitting (annual values) of the 
following equation: 
ln v=a+b ln p (9) 

In table 1, I introduce a complete 
simulation of a SEPS, related to 
Simulations A, B, C, and D. 

For each level of variability (C, D), I 
run 10 sets of 100 simulations. For each 
set, I calculated the mean of b, its 
variance, and the mean of the coefficient 
of determinations of the fitting of eq. (9). 
These figures are displayed in table 2.  

For the case when the variation of d is 
characterized by lognormal (3.5582, 0.15), 
I also considered the following four 
situations: 

Situation I. There is a propensity to 
the deterministic value of df to occur at 

least 17 times, during the simulation. 
Situation II. The value of df is not 

submitted to any restrictions. 
Situation III. The value of df is equal 

or less to 37 cm. 
Situation IV. Combines situations I, 

and III. 
For each one of these situations I 

simulated 10 sets each one with 100 
simulations. For each set I calculated the 
average value of b, and finally I 
estimated the average of these 10 values.  

I found the following figures of b. 
Situation I: -1.4812; Situation II: -1.4822; 
Situation III: -1.4850; Situation IV:  
-1.4851. 

In all 4000 simulations the coefficients 
of determination are greater then 0.9990. 

 
Comments on the simulations 

 
Let me introduce a few necessary 

notes about the previous simulations. 
1) In table 1, simulations A and B are 

virtually identical. Thus the mechanism 
of self-thinning, and its associated 
simulation procedure are acceptable. 

2) The values of b in simulations C 
and D, are consistent with the assumed 
variability of the final values of dbh. The 
value closer to –1.5 is associated to the 
less variable environment. 

3) Referring to Situations I to IV, I 
verify that the level of propensity I 
choose has small impact in the deviation 
of the dynamics of the SEPS from the 3/2 
power line. 

4) The same Situations also suggest 
that, in real stands, it is probable that 
only the natural limitation on the 
variation of the environment is sufficient 
to confine the stand to a trajectory close 
to the 3/2 power line. 
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Table 1 - The figures associated to four simulations of a SEPS of Pinus pinaster Ait. To fit the 
values of b, annual values were used. For the meaning of symbols see the text 

 
Age  Simulation A Simulation B  Simulation C Simulation D 

 p d v p d v p d v p d v 
10 1943 14.32 0.0857 1945 14.31 0.0855 1810 14.83 0.0946 1945 14.31 0.0859 
20 959 20.38 0.2472 960 20.36 0.2473 760 22.88 0.3407 789 22.47 0.3200 
30 625 25.25 0.4698 626 25.23 0.4702 586 26.07 0.5118 378 32.43 0.9410 
40 482 28.75 0.6937 482 28.73 0.6943 424 30.63 0.8252 290 37.04 1.4061 
50 412 31.10 0.8787 412 31.08 0.8793 363 33.14 1.0456 290 37.04 1.4061 
60 374 32.63 1.0141 375 32.61 1.0149 315 35.57 1.2886 223 42.28 2.0849 
70 353 33.59 1.1062 353 33.57 1.1071 279 37.80 1.5351 196 45.06 2.5123 
80 341 34.18 1.1662 341 34.16 1.1670 279 37.80 1.5351 196 45.06 2.5123 
b -1.500   -1.500   -1.493   -1.484   
r2 1.000   1.000   1.000   1.000   
 
 
 

Table 2 - Values of b (eq. (9)) of ten sets of 100 runs of the simulator, for Simulations C, and D 
 

Sets Simulation C Simulation D 
 Mean of b Variance Mean of r2 Mean of b Variance Mean of r2

1 -1.490087 1.592E-05 0.999915 -1.482343 3.987E-05 0.999860 
2 -1.490409 1.989E-05 0.999910 -1.483298 9.269E-05 0.999854 
3 -1.489134 1.613E-05 0.999912 -1.480690 5.984E-05 0.999850 
4 -1.489928 1.688E-05 0.999915 -1.482284 5.223E-05 0.999864 
5 -1.489920 1.688E-05 0.999918 -1.481596 5.912E-05 0.999860 
6 -1.489925 1.574E-05 0.999911 -1.482684 6.001E-05 0.999868 
7 -1.489414 1.769E-05 0.999919 -1.482252 5.477E-05 0.999869 
8 -1.489964 1.702E-05 0.999919 -1.482818 5.435E-05 0.999870 
9 -1.490255 2.116E-05 0.999919 -1.482680 6.185E-05 0.999851 
10 -1.489255 1.223E-05 0.999919 -1.481254 4.837E-05 0.999879 

Mean -1.489829   -1.482190   
 
 It is my understanding that the main 

conclusion I can infer from the 
simulations is the following one: 
probably, the values of b in the range –1.45 
to –1.49, found in the literature, and obtained 
from empirical data, are not conclusive for 
the definitive rejection of the 3/2 power law. 

Now I approach the stochastic 
dynamics of SUPS. 

 
 
 

The stochastic dynamics of SUPS 
 
The SUPS to be simulated   

 
My assumptions about the uneven-

aged stands of MP are the following ones 
(BARRETO, 2002a): 

1. The population is structured in age 
classes with a range of 10 years. 
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2. Trees with age smaller then 10 
years are considered regeneration, 
subject both to inter and intraspecific 
competition. Thus, the first age class has 
trees with age from 10 to 19 years. 

3. Trees with 80 years or older, in 
average and poor sites, have already 
attained a state of decrepitude that can 
be ignored for modelling purposes. 

4. I will consider my MP population 
structured in seven age classes, in the 
range 10 to 79 years.  

 To characterize the dynamics of the 
SUPS of MP (USMP), I will consider one 
time period of ten years. 

During a period of 10 years, the trees 
of a given age class will be self-thinned 
or will move to the next class, if they 

escape natural mortality. 
To establish model of the SUPS, for 

each class, I must estimate the fraction of 
trees that die (M), transit to the next class 
(T). 

In SUPS, each age class occupies the 
same area (BARRETO, 1989). 

My estimations of these parameters 
are exhibited in table 3. Also, in the same 
table, I insert a stable age distribution, 
referred as trees per class per hectare (yi, 
i = 1,2,…7), in a poor site.  

My simulations use a Leslie model 
(LM) supported by the previous 
parameters. The associated Leslie or 
transition matrix is the one (BARRETO, 
2002a) of eq. (10). 
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:= 
 
 
 ⎜ ⎟

⎝ ⎠ 
 
 
 

Table 3 - Characteristic parameters of the uneven-aged stand of MP, a stable age distribution, 
and the mean dbh of the classes (di, cm). yi as trees per ha. Ai  is the mean area occupied by a 
tree, m2. For the meaning of T and M see the text 
 

Class T M yi di Ai
I 0.5584 0.4416 282 11.12 5.066 
II 0.7042 0.2958 157 14.93 9.099 
III 0.8093 0.1907 111 17.82 12.870 
IV 0.8794 0.1206 90 19.81 15.873 
V 0.9258 0.0742 79 21.12 18.083 
VI 0.9551 0.0449 73 21.96 19.569 
VII 0.9643 0.0357 70 22.48 20.408 
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My main reference for the next 

analysis is Caswell (2001). The 
eigenvalues of this matrix (EVB) are: 
EVB=[1, 0.387±0.607i, -0.194±0.643i,- 
-0.594±0.264i]' (11) 

The dumping ratio associated to 
matrix B is 1.39, and the mean generation 
time length is 40 years. 

The fraction of trees of each age class, 
when the stable age distribution is 
attained (FR) can be obtained from the 
eigenvector associated to the eigenvalue 
1, as follows: 
FR=[0.327, 0.183, 0.129, 0.104, 0.092, 0.085, 
0.081]' (12) 

The reproductive values of the classes 
are given by vector RV: 
RV=[1, 1.437, 1.613, 1.523, 1.220, 0.832.  
0.040]' (13) 

The reproductive values of the classes 
increase till class III, and after they 
decline. This is a common pattern in 
aged-structured biological populations. 

The sensitivity of the dominant 
eigenvalue to the elements of matrix B 
(eq. (10)) are exhibited in the next matrix 
S, eq. (14). 

The elasticities associated to matrix S 
are displayed in the following matrix E, 
eq. (15). 

Matrix S (eq. 14) shows that the 
higher sensitivities are associated to the 
regeneration of the SUPS. This finding 
corroborates a truth already known by 
foresters. They are aware that the stand 
regeneration is a critical issue in the 
management of uneven-aged stands. 
This evidence will be used to establish 
my strategy for simulation. 

 

S
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E
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A strategy for simulation 
 

show that my 
unified theory for self-thinned stands has 
the

onsider only the impact of ES 
up

ble m is 
cal

ant,  is the total 

esti

introduced by multiplying 

c. 

Case 1. s<n implies c<1. There is an 
im  the 
SU

PS 
see

as if the environment is 
det

o values of r, r1 and r2. 
Als

ha is impossible 
for 

e a random mean value 
of 

obtained a very 
coa

My purpose is to 

 capability of supporting stochastic 
simulations of SUPS. I am not attempting 
to model any set of empirical data. Thus, 
without loss of generality I can choose 
any level of the effects of environmental 
stochasticity (ES) upon the dynamics of 
the SUPS.  

I preferred simplicity. Given matrix S 
(eq. 14), I c

on regeneration, this is, its effect on 
the values of the first line of matrix B (eq. 
10). Also, tentatively, I embedded a 
mechanism of homeostasis in the 
simulator. The mechanism is also simple, 
but is enough for my scope. The basic 
self-control of the SUPS is estimated by a 
variable r. When r=1, the SUPS behaves 
as if the environment is deterministic 
(complete homeostasis regarding to ES). 
This mechanism establishes the link 
between ES and the vital rates. 

Let s be a random value of the total 
density of the SUPS. The varia

culated as: 
m= - ln r/s (16) 

At a given inst n
density of the SUPS. The variable c is 

mated as: 
c= r exp(m n) (17) 

The ES is 
the values of the first line of matrix B, by 

Let me clarify the behaviour of c. 

provement in the site quality, and
PS moves toward a structure with 

smaller total density, but larger trees. 
Case 2. s>n implies c>1. There is a 

degradation of the site quality. The SU
ks a larger total density with smaller 

trees. 
Case 3. s=n implies c=1. The SUPS 

reacts 
erministic. 
Now, let me clarify the effect of r. Let 

me consider tw
o, s1= s2, and n1= n2. In case 1, if r1> r2 

then c1< c2. In Case 2, if r1> r2 then c1> c2. 
The increasing of r amplifies the 
response of the SUPS in each direction. 

I also considered that, in each class, 
there is an upper limit to the tree size. 

I considered values of r equal to 1.1, 
4.1, 7.1, 10.1, 13.1, 16.1, 19.1. 

Now, I must consider the generation 
of random values of s. 

Total density is a discrete variable. A 
value of 999.333 trees/

the density of a SUPS, but 999333 trees 
is an acceptable value if the same 
homogeneous forest spreads for 
thousand hectares. The area unit is an 
arbitrary choice. 

Also, I could choose for each class of 
the SUPS structur

the dbh (a continuous variable), and 
after calculate the frequencies of each 
class, and the total density. I tried this 
method and the behaviour and patterns 
of the simulations are the same, as for the 
algorithm I applied. I call this procedure 
algorithm 2, and I will describe it ahead. 
Also, I do not know any reason to reject 
the hypothesis of a random environment 
with continuous variation without 
constant rate of change. 

First, tentatively, I used a discrete 
distribution for s, but I 

rse set of values. Thus, I choose to use 
a lognormal distribution for s, with mean 
equal to the total density of the stable 
structure (table 3), and variances 0.25, 
0.45, 0.65, 0.85. 

The main algorithm of the simulator 
is as follows: 
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Ge
or s  calculate m  calculate 

etects the new 
environmental situation s, filters the 
im

n of the average 
env

ccurs 
in 

 simulator 
gu

The simulations 

or each pair [r, variance], I simulated 
a s

nerate a random number  generate a 
random value f
c  multiply the figures in the first line of 
matrix B by c  calculate the new 
frequencies of the classes  for each class, 
calculate the area occupied by the mean 
tree  check, and adjust, if the upper limits of 
the classes are violated calculate the total 
area occupied by the new frequencies check 
if this area is greater then 10000 m2, and 
eventually adjust the frequencies use the 
new value of total density, and the previous 
one to calculate  the natural logarithm of 
their ratio (growth rate)    

  
Briefly, the SUPS d

pact with its mechanism of 
homeostasis, and after accommodates to 
the new conditions. 

The value of s is assumed as the 
aggregate estimatio

ironmental conditions in the next 
decade, and this length of time is 
considered sufficient for the interna-
lisation of the change by the SUPS. 

Although I do not explicitly consider 
the effects of ES upon M, and T, it o

a coherent manner when exceeding 

trees are self-thinned. Also, the size of 
the mean tree of each class is not 
immune to the effects of ES. 

The algorithm of the
arantees the harmonic impact of ES 

upon all relevant biological parameters 
of the tree population. The initial impact 
is upon the vital rates directly associated 
to regeneration, but, after, this effect 
coherently propagates to the remaining 
structural and dynamical aspects of the 
SUPS. 

 

 
F
et of 10 runs of the program, being the 

initial situation the stable structure. Each 
run performed 105 interactions. From 
each run, I retained the last values of 
total density (p, trees/ha), space 
effectively being used (AU, m2), and the 
estimation of the mean stochastic growth 
rate (λs). The means of the sets are 
exhibited in table 4. These means are 
equivalent to use 106 interactions, this is, 
a period of 107 years. 

 
Table 4 - Results of the stochastic simulations of the SUPS. For all combinations of r and 
variance, it is verified λs=0.999998. For the meaning of the symbols see the text. Figures as 
follows: mean/standard deviation 
 

Variance Variables r 
  1.1 4.1 7.1 10.1 13.1 16.1 19.1 Mean 

0.  72 2 7125 p 3/0.0 4/0.10 711/0.08 71 70/0.0  70 39/0.1  70 38/0.1  70 3 8/0.1 712 
 AU 9987/0.07 9942/0.51 9927/0.54 9918/0.48 9912/0.74 9908/0.78 9904/0.79 9928 

0.  45 p 719/0.04 696/0.28 689/0.16 685/0.25 684/0.29 682/0.25 681/0.19 691 
 AU 9975/0.14 9707/2.35 9699/1.87 9696/2.66 9694/2.95 9693/2.32 9692/1.90 9737 

0.  65 p 711/0.15 680/0.54 673/0.18 668/0.45 666/0.31 664/0.19 663/0.26 675 
 AU 9910/1.51 9475/3.63 9506/3.49 9519/4.12 9527/3.81 9532/3.30 9532/4.15 9572 

0.  85 p 686/0.54 669/0.54 662/0.23 657/0.34 654/0.43 652/0.38 651/0.39 662 
 AU 9587/7.03 9319/4.89 9383/4.05 9408/5.61 9422/4.73 9428/4.60 9434/4.25 9426 

Mean p 709 690 684 680 678 677 676 - 
 AU 9864 9610 9629 9635 9639 9640 9641 - 
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The figures in table 4 let me formulate 
the

tal density are 
sm

density asymptotically 
de

decreases with 
inc

to the area being 
use

5. The area being used decreases 
wi

mean stochastic growth rate, 
λ

 

 following assertions: 
A1. All values of to
aller then the one of the stable 

structure (862). 
A2. Total 

clines with increasing values of r. 
Probably, overreaction is not an 
advantageous property. 

A3. Total density 
reasing environmental variability. 

This does not surprise. 
A4. There is a trend 
d to decrease with increasing values 

of r. 
A

th increasing environmental 
variability. 

A6. The 
s, 

nt and 
con

t A6 is not an uncommon 
occ

Ergodicity 

An interesting property of stochastic 
sim

gard to this property, I register 
tw

y simulator, with any 
init

er of 
int

my 

simulator has an interesting biological 
me

ion of algorithm 2 

 described as 
ws: 

l distribution of d1 (table 3). 

d1, 
d5=

y =1428.57142/ A

Th area occupied by 
the tree 

ynamics of the area occupied by 
the tree (A) can be easily characterized. 
Fir

ts, volume 
per

converges to the dominant eigenvalue 
of matrix B, this is, to 1 (eq. (11)). 

Statements A1-A5 are cohere
sistent. 
Statemen
urrence. 

 

 

ulators is ergodicity. For more details 
about it see chapter 14 in CASWELL 
(2001). 

In re
o verifications: 
V1. If I run m
ial structure, with the same set of 

random numbers, for 105 interactions, I 
obtain always the same structure. 

V2. If I extend the numb
eractions to 106, I obtain a structure 

very close to the stable one (table 3). 
The observed ergodicity of 

aning. The vital rates embedded in 
matrix B are capable of determining the 
present age structure regardless of the 
structure of the SUPS in the past. This 
occurrence confers, at least, formal 
verisimilitude to matrix B, and to the 
structure and performance of my 
simulator. Also, this result grants 
credibility to the concept of a given forest 
structure associated to a site, and to a 
level of soil use (tree spacing), this is, to a 
given index of performance (BARRETO, 
1995).  

 
Descript

 
Algorithm 2 can be

follo
1. Find a random value of a 

lognorma
2. Calculate d2=1.342626 d1, 

d3=1.602518 d1, d4=1.781475 
1.899280 d1, d6=1.974820 d1, 

d7=2.021853 d1

3.  Calculate Ai=0.0409678 di2. 
4. Calculate i i.

5.  Calculate s=Σy . i

 
e dynamics of the 

 
The d

st, remember that this variable has a 
linear dimension with power 2. Now, I 
apply the method described in BARRETO 
(1995) and the information of table 3, 
exhibited in the same article.  

Let z represents the variables with 
linear dimension (dbh, heigh

 area unit). For a variable y, 
Ry=y(10)/yf, y(10)= value of y at age 10. 
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mo t

n m

ance, -1 

ntal relationships of the SEPS 
gro

GRz (27) 

uated my text with 
specific comments pertinent to the issues 
I a

elf-thinned stands 
suc

 (BARRETO, 2001) 
cre

to the controversial interpretation 
of 

nder a stochastic 

ta. 

ory. 

e Structure and Yield of 
Stands. A Theoretical 

g the 3/2 Power 

o
BA

inned Stands. Silva 

BA
s of Thinning. An 

Then, it can be written: 
RA=Rp-1 (18) 
RA=Rz2 (19) 
RA=Rv2/3 (20) 

Let RGRy represent the relative 
growth rate of y, and RMR the relative 

rtality rate, a  a given age. Thus, from 
the previous equations, I obtain: 
RGRA= -RMR (21) 
RGRA= 2 RGRz (22) 
RGRA=2/3 RGRv (23) 

ticular u

I can also write: 
per

A(t)= A(10) Rp(1-exp(-c(t-10))) (24) 
The Gompertzia odel for the area 

per tree is: Thi

A(t)=Af RA exp(-c(t-10)) (25) 
For inst for MP, RA=6.018 =  

=0.166. 
Eqs. (21)-(23) imply the other 

fundame
wth: 

RGRz=- ½ RMR (26) 
RGRv= 3 R

RGRv= -3/2 RMR (28) 
Rz=Rp-0.5 (29) 

., 1989. Th
U even-Aged Pure 

Rv=Rz3 (30) 
Rv=Rp-3/2 (31) 

 
a

BAR
Final comments llowin

 
I already punct

pproached. Thus, here, I only state a 
few general remarks. 

My main conclusion is that my 
unified theory for s

cessfully satisfied the test mentioned 
in the Introduction: I developed coherent 
and consistent stochastic simulators both 
for SEPS, and SUPS.  

The procedure described in part II of 

method SB-BARTHIN
ates the possibility of several 

alternatives of simulation for the 
stochastic modelling of self-thinned pure 
stands. I illustrated this potential in this 
paper. 

My simulations of SEPS bring a new 
insight 

the empirical data related to the 3/2 
power law. 

The literature dealing with SUPS is 
scarce, par

spective. This situation may reinforce 
the interest of my results in this area. 

I illustrated that a simple model can 
generate coherent and consistent da

s data and the family of models I here 
start introducing can contribute to the 
clarification of relevant issues in forest 
ecology, and foster the formulation of 
new conjectures and their simulated 
evaluation. 

This is a very positive attribute for a 
scientific the
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