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Abstract. The author uses an analytical procedure he developed, and simulated data of self-
thinned even-aged mixed stands of Quercus robur+Pinus pinaster, Pseudotsuga menziesii+Picea 
sitchensis, and Pinus nigra ssp.laricio+Pinus pinaster, to scrutinize the allometry and fractal 
geometry of this type of stands. He verified that they are highly variable. They continuously 
change with initial proportions of each population, and age. 
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A Geometria Variável dos Povoamentos Regulares Auto-Desbastados Mistos. Uma 
Inquirição Simulatória 
Sumário. O autor usa um procedimento analítico que desenvolve e simulações de povoamentos 
auto-desbastados regulares mistos de Quercus robur+Pinus pinaster, Pseudotsuga menziesii+Picea 
sitchensis, e Pinus nigra ssp.laricio+Pinus pinaster, para propor uma clarificação da alometria e 
geometria fractal deste tipo de povoamentos. Verifica-se que estas são altamente instáveis, 
variando com as proporções inicias das populações e idade. 
Palavras-chave: alometria; fractais; povoamentos auto-desbastados mistos; Picea sitchensis; 
Pinus nigra ssp. laricio; Pinus pinaster; Pseudotsuga menziesii; Quercus robur 
 
Le Changement de Géométrie des Peuplements Réguliers Auto-Éclaircis. Une Enquête avec 
Simulation 
Résumé. L'auteur simule des peuplements auto-éclaircis réguliers mixtes de Quercus 
robur+Pinus pinaster, Pseudotsuga menziesii+Picea sitchensis, et Pinus nigra ssp.laricio+Pinus 
pinaster. Il utilise les résultats de ces simulations pour clarifier l'allométrie, et la géométrie 
fractale de ces  mêmes peuplements. Sa conclusion est que toute la géométrie des peuplements 
mixtes change avec les  proportions initiales des espèces et avec l'âge. 
 Mots clés: allométrie ; fractale ; peuplements auto-éclaircis réguliers mixtes ; Picea sitchensis; 
Pinus nigra ssp. laricio; Pinus pinaster; Pseudotsuga menziesii; Quercus robur 
  
 
Introduction 

 
This paper is a follow up of BARRETO 

(1995), in which I deal with the allome-

try, fractal geometry, and scaling factors 
of self-thinned even-aged pure stands 
(SEPS). Now, I will attempt to extend the 
same analysis to self-thinned even-aged 
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mixed stands (SEMS), using the same 
simulative approach. The present effort 
is also related to my clarification of the 
3/2 power law (BARRETO, 1994a), my 
concept of tree competition (BARRETO, 
1997, 1999b), and to my typification of 
the patterns of tree interaction 
(BARRETO, 1999a). Here, I will not repeat 
the concepts and findings I presented in 
these papers. 

In the present article, I will show that, 
in SEMS, the allometry, fractal geometry, 
and scaling factors vary with the propor-
tions of trees of each species, and the 
ratio of their relative growth rates, this is, 
they change during the life of the stand. 

From here on, referring to a tree 
population in a SEMS, the variable b(t) is 
the power in the following equation: 
v(t) Pm(t)b(t) = K  (1) 

v(t) is the mean tree stem volume at 
age t, Pm(t) is the number of trees per 
area unit at the same age, and K is a 
constant that varies with age.  

Also, this paper enlarges my seminal 
result that b(t), in SEMS, vary with age, 
stated in BARRETO (1990, table 7). This 
verification was illustrated also in 
BARRETO (1997, 2000a). 

b(t) is related to the relative growth of 
v (RGRv(t)), and the relative mortality 
rate (RMR(t)), at age t, as follows 
(BARRETO, 1997, eq. (12)): 
b(t) = -RGRv(t)/RMR(t) (2) 

I suggest the explicit introduction of 
age (t), in eqs. (11)-(13) presented in 
BARRETO (1997), for more rigor and 
clarity. 

The development of this paper can be 
described as follows: 

a) First, I will describe my simulative 
and analytical methods, and show how 
the value of b(t) is related to the main 
allometry and fractal geometry of a tree 

population in SEMS. 
b) I will use simulations of SEMS of 

Quercus robur+Pinus pinaster (QR+PP), 
and of Pseudotsuga menziesii+Picea 
sitchensis (PM+PS), to illustrate the 
variation of b(t).. 

c) I will apply the results derived in a) 
to simulated SEMS of Pinus ningra ssp. 
laricio+Pinus pinaster (PN+PP). These 
species are used because I am able to 
simulate the dynamics of the biomass of 
their populations (BARRETO, 1994, 1999c, 
2000b, 2004). 

d) I close the paper with adequate 
final comments. 

In all simulations, my model BACO2 
was used. 

This article is a revised version of 
BARRETO (2002b). 

 
The simulative approach 

 
In this section, I will describe the 

method I used in my analysis. 
I simulated the standing biomass of 

crown, stem and roots, of PN and PP, in 
SEMS with initial proportions of PN equal 
to 0.2, 05, 0.8. For ages 20,30, … 90, I 
calculated the relative growth rates, and 
the relative mortality rates for the two 
populations. 

I assumed that these rates are 
associated to instantaneous Gompertzian 
patterns of variation, and I calculated the 
correspondent ratios of "value at age 
10/final value". 

To the SEMS QR+PP, and PM+PS, I 
applied the analytical procedure 
described in the next section.  

 
The analytical procedure 

 
Now, I will describe the analytical 

approach I also used. 
First, I must have the simulated data 
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of the number of trees of each popula-
tion, in SEMS, for several pairs of 
consecutive years. These changes of the 
number of trees allow me to calculate the 
relative mortality rates, of the popula-
tions at several ages. I apply these values 
to eq. (2), to obtain the values of b(t).  

To obtain the key value of the power 
of the linear dimension, for the number 
of trees per area unit, xp(t), I use the 
following equation: 
xp(t) = -3/b(t)  (3) 

To estimate the same power for other 
population variables, I only have to 
algebraically add the value of xp(t) to the 
correspondent (constant) value for the 
tree (BARRETO, 1995, table 3). 

For a given population variable, to 
evaluate its ratio "value at age 10/final 
value" I rise the same ratio for the 
growth of a variable of the tree with 
linear dimension (e.g., dbh) to the 
correspondent power calculated as 
described in the previous paragraph. 
From this ratio, assuming an 
instantaneous Gompertzian growth, I 
can calculate the instantaneous relative 
rate of growth of the variable, at age t. 

To check the accuracy of this method, 
I compared the values of the relative 
rates of variation it generates, with those 
estimated from the simulated values of 
two contiguous years, and I verified that 
they are virtually the same for the 
mortality rate, and also very close for the 
relative growth rates of the biomasses of 
the crown, stem, roots, and total standing 
tree biomass of the populations. 

 
The competitive hierarchies of the 
selected SEMS 

  
In my conceptual model for tree 

competition, the Grime's hypothesis is 

accepted. Thus the ratio of the relative 
growth rates, of the species in compe-
tition, determines the competitive domi-
nance. The species with larger relative 
growth rate is the dominant. In this 
context, it is relevant to show how the 
ratio of the relative growth rates behaves 
in the three SEMS I will analyze here. 
These ratios are exhibited in Table 1. 

Referring to my typification of the 
interactions of tree populations 
(BARRETO, 1999a), I verify the following: 

a) The interaction of the SEMS QR+PP 
is Type I: the ratio increases with age. 

b) The interaction of the SEMS PN+PP 
is Type III, but very close to Type II: the 
ratio decreases with age, but is almost 
constant. 

c) The interaction of the SEMS PM+PS 
is Type VI: the ratio is very close to 1, 
and a shift of dominance occurs early. 

It is convenient to interpret the 
meaning of the values of b(t). If b(t)>3/2, 
then the population is dominant, its 
(stem) standing volume is increasing 
faster then in pure stand, and it transfers 
to the dominated species some of its 
mortality (less intense self-thinning); the 
effect of the other population upon it is a 
positive coefficient of competition. If 
1<b(t)<3/2, then the population is 
dominated, its standing volume is 
increasing slower then in pure stand, and 
suffers a more intense self-thinning; the 
effect of the other population upon it is a 
negative coefficient of competition. If 
b(t)=1, the difference with the previous 
situation is the actual constancy of the 
standing volume. If b(t)<1, now the 
standing volume decreases with age. 

Now, I move to the analysis of the 
mixed stands of QR+PP, and PM+PS, 
where I only estimated the values of b(t), 
as already stated. 
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The SEMS with QR+PP 
 
In Table 2, I exhibit the values of b(t), 

in three SEMS, when the initial 
proportion of the number of trees of QR, 
at age 10, is 0.2, 0.5, 0.8. The stands are 
the same used in BARRETO (1999a). 

This table shows that the values of 
b(t) mirror, in an adequate manner, the 
competitive hierarchy, the effect of the 
proportion of the dominant species, and 
the coefficients of competition of this 
type of interaction, displayed in 
BARRETO (1999a, Table 1A). Also, the 
overall values of b reflect correctly the 
competitive hierarchy of the stand. 
 

The SEMS with PM+PS 
 
Here, I repeat the previous analysis to 

the SEMS of PM+PS. In Table 3, I exhibit 
the values of b(t), in three SEMS, when 
the initial proportion of the number of 
trees of PM, at age 10, is 0.2, 0.5, 0.8. The 
stands are the same used in BARRETO 
(1999a). 

The values of b(t), in Table 3, has the 
same correct performance as those in 
table 2, and they reflect the general 
patterns of variation of the coefficients of 
competition of this type of interaction, 
displayed in BARRETO (1999a, Table 6A).  

 
Table 1 - The ratios of the couple of species here considered 

 
Ages 10 20 30 40 50 60 70 80 90 

QR/PP 2.209 2.417 2.645 2.894 3.167 3.465 3.791 4.148 4.539 
PN/PP 2.500 2.476 2.451 2.426 2.402 2.378 2.355 2.331 2.308 
PM/PS 0.987 1.007 1.027 1.048 1.069 1.091 1.112 1.135 1.158 

 
 

Table 2 - The values of b(t), in SEMS of QR+PP, for three initial fractions of the trees of QR, at 
age 10 (fr). The last two lines of the table show the adjusted values of b (least squares regression 
of the logarithmic form), for the decade values of each population, and the associated 
coefficient of determination 

 
fr=0.2 fr=0.5 fr=0.8 Age QR PP QR PP QR PP 

10 4.3459 1.3916 2.6913 1.1669 1.9738 1.0077 
20 4.6434 1.2893 2.7680 1.0869 2.0002 0.9461 
30 5.0844 1.2157 2.9074 1.0328 2.0651 0.9030 
40 5.7771 1.1519 3.0930 0.9868 2.1608 0.8621 
50 6.6750 1.0996 3.3466 0.9500 2.2394 0.8649 
60 7.9715 1.0672 3.5909 0.9149 2.3573 0.7318 
70 11.0686 1.0173 3.9206 0.8126 2.4435 0.7145 
80 14.4441 1.0080 4.2364 0.8607 2.6082 0.6735 
90 28.5563 0.9682 4.7720 0.7817 2.6241 0.5869 
b 5.0558 1.1832 2.8291 0.9985 1.9781 0.8667 
R2 0.989 0.999 0.997 0.999 0.998 0.999 
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Table 3 - The values of b(t), in SEMS of PM+PS, for three initial fractions of the trees of QR, at 
age 10 (fr). The last two lines of the table show the adjusted values of b (least squares regression 
of the logarithmic form), for the decade values of each population, and the associated 
coefficient of determination 

 
fr=0.2 fr=0.5 fr=0.8 Age PM PS PM PS PM PS 

10 1.6834 1.7016 1.6890 1.7074 1.6946 1.7131 
20 1.6334 1.6184 1.6299 1.6150 1.6263 1.6115 
30 1.6221 1.5751 1.6090 1.5627 1.5961 1.5505 
40 1.6253 1.5463 1.6021 1.5252 1.5795 1.5207 
50 1.6379 1.5262 1.6040 1.4967 1.5715 1.4683 
60 1.6565 1.5115 1.6114 1.4738 1.5688 1.4381 
70 1.6795 1.5002 1.6226 1.4546 1.5693 1.4117 
80 1.7050 1.4910 1.6364 1.4377 1.5724 1.3879 
90 1.7355 1.4560 1.6514 1.4224 1.5769 1.3659 
b 1.5392 1.4949 1.5268 1.4834 1.5145 1.4721 
R2 1.000 1.000 1.000 1.000 1.000 1.000 

 
 
Also, the overall values of b mirror 
correctly the competitive hierarchy of the 
mixture. As the two populations have 
very close relative growth rates the 
values of b(t) are about 1.5. 

 
The SEMS with PN+PP 

 
The values of b(t) 

 
To have an adequate understanding 

of the behavior of the populations of PN 
and PP, in SEMS, the only possible 
paradigm is the characteristic parameters 
of their dynamics in pure stands. Let me 
write the Gompertz equation, for a 
general forest variable, as: 
y(t)= yf Ryexp(-c(t-10))  (4) 
where yf is the final value of y, Ry=y(10)/ 
yf. For a given species, c, and Ry are 
constant. 

In table 4, I introduce the values of c 
and Ry, for SEPS of PN, and PP. In Table 
5, I exhibit the power of the linear 
dimension, associated to the same 
variables. This table is equivalent to 

Table 3, in BARRETO (1995). 
The main allometry, and the fractal 

geometry, of the SEPS of these two 
species, for any independent variable, 
can be obtained from Table 5, as 
described in BARRETO (1995).  

In Table 6, I introduce the values of 
b(t), for simulated SEMS of these two 
Mediterranean pines, when the initial 
fraction of trees of PN is 0.2, 0.5, 0.8. As 
the ratio of the relative growth rates of 
the two species is almost constant, the 
values of b(t) are mainly controlled by 
the proportions of the trees of the two 
competitors. As in the previous SEMS 
already analyzed, the lower is the 
proportion of the dominant species, the 
higher are the figures of b(t). In SEMS 
with fr=0.2 and fr=0.5, the proportion of 
PN, increases respectively, form age 10 to 
90, from 0.20 to 0.33, and from 0.50 to 
0.53, thus b(t) decreases, with age. When 
fr=0.8, the same proportion decreases 
from 0.80 to 0.72, and b(t) increases with 
age. 
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Table 4 - The values of c, and Ry for PN and PP, in SEPS 

 
Variable PN PP 

c 0.051 0.050 
Stand density 81.433 6.018 
Tree dbh, and height, stem volume 
or biomass per area unit 0.1108 0.4076 

Tree crown biomass 0.0122 0.1656 
Tree stem volume, and biomass 0.0014 0.0677 
Tree root biomass 0.0016 0.0745 
Root biomass per area unit 0.1208 0.4498 
Total biomass per area unit 0.1732 0.5040 

 
Table 5 - Power of the linear dimension of several variables, in SEPS of PN and PP 
 

Variable PN PP 
Stand density -2 -2 
Tree dbh, and height, stem volume 
or biomass per area unit 1 1 

Tree crown biomass 2 2 
Tree stem volume, and biomass 3 3 
Tree root biomass 2.948 2.911 
Tree total biomass 2.933 2.914 
Crown biomass per area unit 0 0 
Root biomass per area unit 0.948 0.911 
Total biomass per area unit 0.933 0.914 

 
Table 6 - The values of b(t), in SEMS of PN+PP, for three initial fractions of the trees of PN, at 
age 10 (fr). The last two lines of the table show the adjusted values of b (least squares regression 
of the logarithmic form), for the decade values of each population, and the associated 
coefficient of determination 

 
Age fr=0.2 fr=0.5 fr=0.8 

 PN PP PN PP PN PP 
10 5.8554 1.3638 3.0029 1.1220 2.0595 0.9568 
20 4.6965 1.2724 2.8110 1.0779 2.0461 0.9402 
30 4.2123 1.2300 2.7162 1.0605 2.0311 0.9368 
40 3.9369 1.2074 2.6543 1.0521 2.0239 0.9363 
50 3.7672 1.1957 2.6102 1.0483 2.0156 0.9374 
60 3.6476 1.1903 2.5778 1.0480 2.0082 0.9392 
70 3.5554 1.1878 2.5505 1.0489 1.9981 0.9402 
80' 3.4991 1.1889 2.5286 1.0523 1.9936 0.9427 
90 3.4265 1.1896 2.4959 1.0584 1.9833 0.9413 
b 4.4383 1.2093 2.6573 1.0222 1.9083 0.8882 

R2 0.997 1.000 1.000 1.000 1.000 1.000 
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The powers of the linear dimension 

 
Now, I can use the figures in Table 6 

to obtain the powers of the linear 
dimension, for the same stands, and 
ages, as displayed in Table 7. The powers 
of the tree variables are invariant, thus I 
only exhibit the figures for the stand 
variables. 

Table 7 shows that the allometry and 

fractal geometry of each population, in a 
SEMS, change with age, during the stand 
life. Each age, has its unique stand 
geometry. It does not make sense to 
speak about the SEMS geometry, without 
mention not only the initial proportions 
of the species, but also the stand age. 
During its life, a SEMS does not evince a 
geometry, it has geometries. 

 
Table 7 - Power of the linear dimension associated to stand variables of the SEMS of PN+PP. 
p=number of trees per area unit 
 

Fr=0.2 
PN PP 

Age P Crown Stem Roots Total P Crown Stem Roots Total 
10 -0.5123 1.4876 2.4876 2.4356 2.4206 -2.1996 -0.1996 0.8004 0.7113 0.7143 
20 -0.6387 1.3612 2.3612 2.3092 2.2942 -2.3578 -0.3578 0.6422 0.5532 0.5562 
30 -0.7122 1.2878 2.2878 2.2358 2.2208 -2.4389 -0.4389 0.5611 0.4720 0.4751 
40 -0.7620 1.2380 2.2380 2.1860 2.1710 -2.4846 -0.4846 0.5154 0.4263 0.4294 
50 -0.7963 1.2036 2.2036 2.1516 2.1366 -2.5089 -0.5089 0.4911 0.4021 0.4051 
60 -0.8224 1.1775 2.1775 2.1255 2.1105 -2.5204 -0.5204 0.4796 0.3906 0.3935 
70 -0.8438 1.1562 2.1562 2.1042 2.0892 -2.5257 -0.6257 0.4743 0.3852 0.3882 
80 -0.8572 1.4283 2.1428 2.0908 2.0758 -2.5234 -0.5234 0.4766 0.3876 0.3906 
90 -0.8755 1.1245 2.1244 2.0725 2.0575 -2.5219 -0.5219 0.4781 0.3891 0.4921 

fr=0.5 
10 -0.9990 1.0009 2.0009 1.9489 1.9339 -2.6737 -0.6737 0.3256 0.2373 0.2402 
20 -1.0672 0.9328 1.9328 1.8808 1.8658 -2.7832 -0.7832 0.2167 0.1277 0.1307 
30 -1.1044 0.8955 1.8955 1.8435 1.8285 -2.8288 -0.8288 0.1712 0.0822 0.0852 
40 -1.1302 0.8698 1.8698 1.8178 1.8028 -2.8514 -0.8514 0.1486 0.0596 0.0626 
50 -1.1493 0.8507 1.8507 1.7987 1.7837 -2.8619 -0.8619 0.1381 0.0491 0.0521 
60 -1.1638 0.8362 1.8362 1.7842 1.7692 -2.8625 -0.8625 0.1374 0.0484 0.0514 
70 -1.1762 0.8237 1.8237 1.7717 1.7567 -2.8601 -0.8601 0.1399 0.0509 0.0539 
80 -1.1864 0.8135 1.8135 1.7615 1.7465 -2.8508 -0.8508 0.1491 0.0601 0.0631 
90 -1.2020 0.7980 1.7980 1.7460 1.7310 -2.8346 -0.8344 0.1654 0.0764 0.0794 

Fr=0.8 
10 -1.4566 0.5433 1.5433 1.4913 1.4763 -3.1355 -1.1355 -0.1355 -0.2241 -0.2215 
20 -1.4662 0.5338 1.5338 1.4818 1.4668 -3.1909 -1.1909 -0.1909 -0.2799 -0.2769 
30 -1.4770 0.5230 1.5230 1.4710 1.4560 -3.2024 -1.2024 -0.2024 -0.2914 -0.2884 
40 -1.4822 0.5177 1.5177 1.4657 1.4507 -3.2039 -1.2039 -0.2039 -0.2930 -0.2900 
50 -1.4884 0.5116 1.5116 1.4596 1.4446 -3.2003 -1.2003 -0.2003 -0.2863 -0.2863 
60 -1.4938 0.5061 1.5061 1.4541 1.4391 -3.1943 -1.1943 -0.1943 -0.2833 -0.2803 
70 -1.5014 0.4986 1.4986 1.4466 1.4316 -3.1909 -1.1909 -0.1909 -0.2800 -0.2769 
80 -1.5048 0.4952 1.4952 1.4432 1.4282 -2.1822 -1.1822 -0.1822 -0.2712 -0.2682 
90 -1.5126 0.4873 1.4874 1.4353 1.4204 -2.1871 -1.1871 -0.1871 -0.2761 -0.2731 
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In Table 7, when b(t) increases, the 
population needs less area to grow as 
much as in pure stand. The value of 
space for the population changes with 
b(t). If b(t)>1.5 the power of the linear 
dimension of trees per area unit (p) is 
greater then –2. If b(t)<1.5 the area unit 
shortens and the power is smaller then  
–2. In both cases the power can become 
fractional. 

The powers of the linear dimension 
for the variables of the population 
biomasses, change in the same sense of 
b(t) and reflect the new "values" of space. 
Linear dimensions smaller then the 
correspondent value of table 5 reflect a 
growth slower then in pure stand and 
even a decline of the biomass, if the 
power is negative. 

 
The relative rates of mortality, and growth 

 
Let me introduce a few new symbols. 

Rp is the ratio Ry referred to the number 
of trees per area unit. RMR(t) refers to 
relative mortality rate and RGR(t) to 
relative growth rate, both at age t. In 
Table 8, I introduce the figures for these 
new variables, for the simulated SEMS. 

Some comments can be elaborated on 
table 8. Obviously, when Ry>1 the 
variable is decreasing with age and has a 
negative value of RGR, and the opposite 
occurs when Ry<1.  

For the population of PN, the 
following is verified: 

1. Rp is always smaller then 81.433, 
what is consistent with its dominance, 
and diminished RMR. 

2. For the same age, the RMR increases 
from fr=0.2 to fr=0.8. 

3. For the same age, the RGR decreases 
from fr=0.2 to fr=0.8. 

4. The decline of the biomass of any 

component, with age, never occurs. 
The performance of the population of 

PP evinces the following aspects: 
1. Rp is always greater then 6.018, 

because its mortality is increased by the 
presence of PN. 

2. For the same age, the RMR increases 
from fr=0.2 to fr=0.8, and the opposite 
happens with the RGR. 

3. The decline of the crown biomass 
occurs in the three SEMS. The power of 
the linear dimension of the tree crown 
biomass is the smallest (2). 

4. The decline of the biomasses of the 
roots and total biomass is verified only 
when fr=0.8. The power of the linear 
dimension of these two tree biomasses is 
between 2 and 3. 

5. The decline of the biomass of the 
stem happens only when fr=0.8. This tree 
component has the largest power of the 
linear dimension (3).     

The figures in tables 6,7,8 do not 
evince discrepancies. This verification 
supports the internal correctness, and 
coherence of the conceptual model and 
analytical procedure I used. 

The relationships among the tree 
geometry, b(t), and the dynamics of a 
population of a given species, in SEMS, 
are clarified as follows: 

1. If b(t)<1.5 the crown biomass of the 
population declines. 

2. If b(t)<1 the stem biomass of the 
population declines. 

3. If b(t)<3/(power of the linear 
dimension of the biomass of the tree 
root) the root biomass of the population 
decline. 

4. If b(t)<3/(power of the linear 
dimension of the biomass of the total 
tree) the total biomass of the population 
decline. 
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Table 8 - The values of Rp and Ry, for the simulated SEMS of PN+PP. In each age, in the second 
line, the values of RMR(t) and RGR(t) are exhibited. 
 

fr=0.2 
PN PP 

Age Trees/ha 
Rp 

Crown 
Ry 

Stem 
Ry 

Roots 
Ry 

Total 
Ry 

Trees/ha 
Rp 

Crown 
Ry 

Stem 
Ry 

Roots 
Ry 

Total 
Ry 

10 3.0852 
-0.0575 

0.0334 
0.1733 

0.0024 
0.3067 

0.0029 
0.2981 

0.0078 
0.2498 

7.1946 
-0.0987 

1.3798 
-0.0161 

0.5740 
0.0278 

0.6367 
0.02930 

0.7894 
0.0118 

20 4.0517 
-0.0429 

0.0478 
0.0932 

0.0043 
0.1669 

0.0050 
0.1623 

0.0076 
0.1492 

8.2914 
-0.0642 

1.5105 
-0.0125 

0.6254 
0.0142 

0.6881 
0.0113 

0.8084 
0.0064 

30 4.7889 
-0.0288 

0.0596 
0.0519 

0.0060 
0.0939 

0.0070 
0.0913 

0.0087 
0.0872 

8.9172 
-0.0403 

1.5843 
-0.0085 

0.6567 
0.0077 

0.7221 
0.0060 

0.8120 
0.0036 

40 5.3413 
-0.0185 

0.0681 
0.0297 

0.0074 
0.0542 

0.0085 
0.0527 

0.0097 
0.0512 

9.2889 
-0.0249 

1.6235 
-0.0054 

0.6730 
0.0044 

0.7398 
0.0034 

0.8243 
0.0021 

50 5.7599 
-0.0116 

0.0744 
0.0172 

0.0084 
0.0317 

0.0096 
0.0308 

0.0105 
0.0302 

9.4922 
-0.0152 

1.6424 
-0.0033 

0.6809 
0.0026 

0.7484 
0.0020 

0.8249 
0.0013 

60 6.0914 
-0.0072 

0.0792 
0.0101 

0.0091 
0.0187 

0.0104 
0.0182 

0.0112 
0.0179 

9.5909 
-0.0093 

1.6489 
-0.0020 

0.6834 
0.0016 

0.7512 
0.0017 

0.8227 
0.0008 

70 6.3694 
-0.0044 

0.0830 
0.0059 

0.0097 
0.0111 

0.0110 
0.0108 

0.0117 
0.0106 

9.6261 
-0.0056 

1.6484 
-0.0012 

0.6832 
0.0009 

0.7508 
0.0007 

0.8193 
0.0005 

80 6.6166 
-0.0027 

0.0862 
0.0035 

0.0101 
0.0066 

0.0115 
0.0064 

0.0122 
0.0063 

9.6235 
-0.0034 

1.7692 
-0.0009 

0.7211 
0.0005 

0.7811 
0.0004 

0.8145 
0.0003 

90 6.8467 
-0.0021 

0.0893 
0.0019 

0.0105 
0.0039 

0.0120 
0.0038 

0.0126 
0.0038 

9.5988 
-0.0021 

1.6361 
-0.0004 

0.6778 
0.0003 

0.7450 
0.0003 

0.8100 
0.0002 

fr=0.5 
 Rp Ry Ry Ry Ry Rp Ry Ry Ry Ry 

10 8.9968 
-0.1121 

0.1267 
0.1054 

0.0108 
0.2310 

0.0126 
0.2229 

0.0309 
0.1773 

11.0080 
-0.1200 

2.1951 
-0.0393

0.9323 
0.0036 

1.0236 
-0.0017 

1.2726 
-0.0120 

20 10.4520 
-0.0719 

0.1410 
0.0602 

0.0136 
0.1315 

0.0158 
0.1270 

0.0240 
0.1143 

12.1447 
-0.0757 

2.2596 
-0.0247

0.9459 
0.0017 

1.0394 
-0.0012 

1.2188 
-0.0060 

30 11.3464 
-0.0447 

0.1518 
0.0347 

0.0160 
0.0761 

0.0184 
0.0735 

0.0230 
0.0694 

12.6492 
-0.0467 

2.2736 
-0.0151

0.9480 
0.0010 

1.0417 
-0.0007 

1.1812 
-0.0031 

40 12.0045 
-0.0274 

0.1594 
0.0203 

0.0176 
0.0446 

0.0202 
0.0430 

0.0232 
0.0416 

12.9107 
-0.0285 

2.2714 
-0.0091

0.9447 
0.0006 

1.0381 
-0.0004 

1.1562 
-0.0016 

50 12.5140 
-0.0168 

0.1654 
0.0119 

0.0188 
0.0263 

0.0216 
0.0254 

0.0237 
0.0248 

13.0198 
-0.0173 

2.2614 
-0.0055

0.9393 
0.0004 

1.0322 
-0.0002 

1.1374 
-0.0009 

60 12.9328 
-0.0102 

0.1703 
0.0070 

0.0197 
0.0156 

0.0225 
0.0151 

0.0242 
0.0148 

13.0361 
-0.0105 

2.2462 
-0.0033

0.9321 
0.0003 

1.0243 
-0.0001 

1.1218 
-0.0005 

70 13.2975 
-0.0062 

0.1746 
0.0042 

0.0204 
0.0093 

0.0233 
0.0090 

0.0248 
0.0088 

12.9964 
-0.0064 

2.2285 
-0.0020

0.9242 
0.0002 

1.0157 
-0.0000 

1.1082 
-0.0003 

80 13.6313 
-0.0037 

0.1784 
0.0025 

0.0210 
0.0055 

0.0239 
0.0054 

0.0253 
0.0053 

12.9239 
-0.0039 

2.2081 
-0.0012

0.9153 
0.0001 

1.0057 
-0.0000 

1.0950 
-0.0001 

90 13.9474 
-0.0022 

0.1824 
0.0015 

0.0215 
0.0033 

0.0246 
0.0032 

0.0258 
0.0032 

12.8326 
-0.0023 

2.1884 
-0.0007

0.9068 
0.0001 

0.9966 
-0.0000 

1.0836 
-0.0001 
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Table 8 – Cont. 
 

fr=0.8 
 Rp Ry Ry Ry Ry Rp Ry Ry Ry Ry 

10 24.6097 
-0.1634 

0.4437 
0.0414 

0.0436 
0.1598 

0.0507 
0.1521 

0.1175 
0.1093 

16.6582 
-0.1407 

3.4503 
-0.0619

1.4953 
-0.0201 

1.6381 
-0.0247 

 2.0261 
-0.0353 

20 25.5134 
-0.0992 

0.3908 
0.0288 

0.0405 
0.0982 

0.0468 
0.0938 

0.0700 
0.0815 

17.5106 
-0.0869 

3.3244 
-0.0364

1.4063 
-0.0103 

1.5435 
-0.0132 

 1.8064 
-0.0179 

30 25.7391 
-0.0598 

0.3687 
0.0183 

0.0403 
0.0591 

0.0463 
0.0565 

0.0574 
0.0526 

17.6856 
-0.0529 

3.2144 
-0.0225

1.3479 
-0.0055 

1.4802 
-0.0072 

 1.6779 
-0.0095 

40 26.0320 
-0.0360 

0.3591 
0.0113 

0.0405 
0.0354 

0.0465 
0.0339 

0.0531 
0.0324 

17.7151 
-0.0321 

3.1364 
-0.0127

1.3087 
-0.0030 

1.4376 
-0.0040 

 1.6004 
-0.0052 

50 26.3575 
-0.0217 

0.3560 
0.0068 

0.0410 
0.0212 

0.0469 
0.0203 

0.0515 
0.0197 

17.6500 
-0.0194 

3.0769 
-0.0076

1.2804 
-0.0017 

1.4067 
-0.0023 

 1.5498 
-0.0030 

60 26.6959 
-0.0131 

0.3560 
0.0041 

0.0415 
0.0127 

0.0474 
0.0121 

0.0504 
0.0119 

17.5251 
-0.0118 

3.0262 
-0.0045

1.2572 
-0.0009 

1.3813 
-0.0013 

 1.5126 
-0.0017 

70 27.0387 
-0.0079 

0.3578 
0.0025 

0.0420 
0.0076 

0.0480 
0.0073 

0.0509 
0.0071 

17.3640 
-0.0071 

2.9813 
-0.0027

1.2373 
-0.0005 

1.3595 
-0.0008 

 1.4833 
-0.0010 

80 27.3841 
-0.0047 

0.3600 
0.0015 

0.0424 
0.0045 

0.0484 
0.0043 

0.0511 
0.0043 

17.1813 
-0.0043 

2.9378 
-0.0016

1.2181 
-0.0003 

1.3385 
-0.0004 

 1.4573 
-0.0006 

90 27.7285 
-0.0029 

0.3636 
0.0009 

0.0430 
0.0027 

0.0490 
0.0026 

0.0515 
0.0025 

16.9869 
-0.0026 

2.8984 
-0.0010

1.2013 
-0.0002 

1.3202 
-0.0002 

 1.4353 
-0.0003 

 
 

The figures in Tables 5, 6, and 8 
illustrate these assertions. 

 
Modular geometry, scaling factors, and 
fractal structure 

 
Before I move to more generic issues, 

I approach the following features of 
SEMS: modular geometry, scaling factors, 
and fractal structure. In a concise 
manner, I will attempt to extend to 
mixed stands the material of the 
pertinent sections, presented in BARRETO 
(1995). 

I admit that in SEMS, as in SEPS, self-
thinning is a neutral thinning. Thus, as 
SEPS, SEMS are self-similar entities, 
formed by modules. Similarly, if I 
hypothesize that, in SEMS, the final 
density of a module of each species is 
one tree, the number of trees, and area of 
each module is not constant, in a given 
stand, but changes instantaneously as Rp 

changes with age (Table 8). 
I use Table 7 to illustrate a case of the 

changing allometry of the SEPS of PN+PP. 
Let me introduce the following 

allometric equation: 
y=adm   (5) 
where d is dbh, a variable with the power 
of the linear dimension equal to one. 

If y is any variable considered in 
Table 7, the respective values of m are 
also the values of the power of the linear 
dimension exhibited in Table 7 
(m=power of the linear dimension of 
y/1). 

This procedure can be extended to 
other independent variables. 

Also, the scaling factors that can be 
established between two different 
populations of the same species, in 
distinct SEMS, change with age. 

The figures in Table 7, and the 
concept of instantaneous Gompertzian 
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pattern of variation of the population 
variables, in SEMS (Table 8), suggests that 
in a given instant, I can obtain the 
variable fractal geometry of SEMS, as it 
can be done for a SEPS of a given species, 
as I illustrated for PP, in BARRETO (1995). 

 
Mixture of maximum standing biomass 

 
One interesting question is the 

mixture that produces the highest total 
standing biomass of the tree populations, 
at a given age. I attempt an inquiry in 
this issue, and I select the age of 100 
years, consistent with the short longevity 
of PP. My results are shown in table 9. 

The maximum production occurs for 
fr=0.18. For the sake of completeness, in 
table 10, I introduce the simulated values 
of the total standing biomass in the SEMS 
with fr=0.2, 0.5,0.8. 

 

Gompertzian simulators 
 
In SEMS with competitors with very 

close RGR, Gompertzian models can give 
an acceptable approximation of the 
population dynamics, as I already 
showed (BARRETO, 1998a, 1999b, 2002a). 
The same happens when the ratio of the 
RGR is constant, or has little variation. I 
take advantage of this circumstance to 
propose Gompertzian simulators for the 
stands with fr=0.2, 05, 0.8, in Table 11. 

The values used to fit the Gompertz 
equations were those of ages 20,30, 
…100. Thus, in table 11, the values of Ry 
refer to the ratio "value at age 20/final 
value". 

The reader can verify that the RGR 
associated to the values of Ry displayed 
in Table 11 are very close to the values 
exhibited in Table 8, when t ≥ 20 years. 

 
Table 9 - Variation of the total standing biomass of the trees, at age 100, in SEMS PN+PP, for 
several values of the initial fraction of the trees of PN (fr). Tons of dry matter per hectare (TB) 

 
fr 0.025 0.05 0.1 0.15 0.175 0.18 0.19 0.20 0.3 0.5 0.65 0.8 
TB 351.3 392.1 436.5 453.5 455.9 456.0 455.9 445.5 435.1 352.5 263.7 197.0 

 
 

Table 10 - The dynamics of the total standing biomass of the trees, in three SEMS of PN+PP. 
Tons of dry matter per hectare 
 

Fr=0.2 Fr=0.5 Fr=0.8 Age 
PN PP Total PN PP Total PN PP Total 

20 20.3 132.8 153.2 32.5 69.3 101.8 33.5 23.2 54.7 
30 61.6 139.6 201.3 78.0 66.3 144.3 64.1 20.3 82.4 
40 119.7 143.7 263.4 133.5 64.8 198.3 97.1 18.8 115.9 
50 177.9 146.2 324.1 184.7 64.0 248.7 125.4 18.1 143.5 
60 225.3 147.7 473.0 224.5 63.6 288.1 146.6 17.7 164.3 
70 259.4 148.6 408.0 252.4 63.3 315.7 161.0 17.4 178.4 
80 282.1 149.2 431.3 270.7 63.2 333.9 170.4 17.3 187.7 
90 296.6 149.6 446.2 282.3 63.1 345.4 176.2 17.2 193.4 
100 305.6 149.9 455.5 289.4 63.1 352.5 179.2 17.2 197.0 
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Table 11 - Gompertz equations for the number of trees (p), and the biomass of needles (N), live 
branches (L), dead branches (D), stem wood (W), stem bark (B), roots (R), and total biomass (T), per 
area unit, in SEMS of PN+PP. For each component, comparing with the original simulated values 
with model BACO2, the values evince an error less then 1.0% but for total biomaas of PN, fr=0.8, that 
shows an error equal to 1.33%, at age 30. 
 
 

fr=0.2 fr=0.5 fr=0.8  
PN PP PN PP PN PP 

p       
c 0.0467 0.0494 0.0498 0.0502 0.0514 0.0508 
Ry 2.7247 3.9727 4.6214 4.9376 7.7026 6.0923 
N       
c 0.0538 0.0476 0.0526 0.0507 0.0496 0.0521 
Ry 0.1929 1.3340 0.3273 1.6580 0.5457 2.0459 
L       
c 0.0538 0.0475 0.0526 0.0506 0.0496 0.0510 
Ry 0.1928 1.3342 0.3273 1.6583 0.5456 2.0469 
D       
c 0.0538 0.0474 0.0526 0.0507 0.0482 0.0519 
Ry 0.1929 1.3342 0.3273 1.6584 0.5453 2.0477 
W       
c 0.0528 0.0530 0.0518 0.0411 0.0505 0.0591 
Ry 0.0517 0.7752 0.0891 0.9634 0.1485 1.1893 
B       
c 0.0525 0.0528 0.0517 0.0411 0.0505 0.0602 
Ry 0.0525 0.7750 0.0891 0.9634 0.1486 1.1885 
R       
c 0.0526 0.0539 0.0517 0.0705 0.0505 0.0564 
Ry 0.0569 0.8215 0.0966 1.0214 0.1610 1.2608 
T       
c 0.0514 0.0502 0.0505 0.0630 0.0489 0.0577 
Ry 0.0637 0.8842 0.1081 1.0994 0.1802 1.3565 
 
 

Final comments 
 
I admit I enlarged the insight, I 

previously disclosed, about the intricate 
issue of the structure and dynamics of 
SEMS. Underpinned by my unified 
theory for self-thinned stands, my results 
have internal coherence, and consistency, 
but, indeed, they need a lasting empirical 
study to be fully corroborated, although 
my understanding is that the results 
exhibited by PUETMANN, HIBBS, and 
HANN (1994) are in the same line of 

conceptualisation as the one here 
presented. 

The main feature to retain, from the 
analysis I developed in this paper, is the 
following one: it is probable that the 
geometry of SEMS is constantly changing 
during the life of the stand. The allometry, 
the fractal geometry, and the scaling 
factors, in any moment, are ephemeral 
realities. 

The figures in Tables 2, 3, and 6 
sustain the assertion that, in SEMS, the 
relative values of b(t) are a good 
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indicator of the competitive hierarchy, 
and the variation of the values of b(t) also 
mirror effectively the type of interaction 
occurring between the species of the 
mixture.  

If I accept that there is a time-space 
symmetry between SEMS and self-
thinned uneven-aged mixed stands, the 
latter ones are a mixture of several 
geometries. 

It is the described variability of mixed 
stands that renders their management a 
very difficult task. 

The analytical procedure I used is 
applicable to a population both in pure 
and mixed stands. This must not surprise 
in a unified theory for self-thinned 
stands. The only difference is that in pure 
stands b(t) is always equal to 1.5. 

The results I here presented also 
suggest that algorithm BRAFO 
(BARRETO, 1998b) must only be applied 
to SEMS with species of close 
competitiveness, or evincing constant (or 
with small variation) ratio of RGR. 

At the present stage of my inquiry on 
self-thinned stands, the core of this paper 
is my best conjecture about the moving 
structure of mixed stands. The 
knowledge of a better one will render me 
happier and more sage.  
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