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Abstract. Investigation on remote imagery accuracy for forest stands biophysical parameters 
estimation has been increasing in the last decades. In order to analyse how Landsat TM images 
and derived vegetation indices could be used to estimate Pinus pinaster stands biophysical 
parameters, 42 sampling plots were established in August 1997 in order to obtain leaf area 
index (LAI) field estimates, dendrometric stands characteristics (e.g. diameter at breast height, 
tree's volume) and spectrometric radiometric data. Sampling plots location was mapped using 
a GPS. After fieldwork, a Landsat TM image was submitted to pre-processing techniques 
(radiometric, atmospheric and geometric correction) and vegetation indices were calculated. 
Several regression equations were adjusted in order to create mathematical models to estimate 
biophysical parameters, using the better-correlated vegetation indices as independent variables. 
The results demonstrated that Pinus pinaster stands biophysical parameters could be estimated 
by means of vegetation indices derived from Landsat TM images, being the best results 
achieved for site index, diameter at breast height and mean and dominant height. 
Key words: Pinus pinaster; forestry biophysical parameters; remote sensing; vegetation indices; 
estimation 
 
Estimativa de Parâmetros Biofísicos em Povoamentos de Pinus pinaster do Norte de 

Portugal Utilizando Imagens de Satélite LANDSAT TM 

Sumário. Foram instaladas 42 parcelas de amostragem, em agosto de 1997, com o objetivo de 
perceber as potencialidades de imagens de satélite na estimativa de parâmetros dendrométricos 
de povoamentos de Pinus pinaster. Em cada parcela de amostragem foram medidos o índice de 
área foliar e as variáveis dendrométricas mais usuais em inventários florestais convencionais 
(exemplo, o diâmetro à altura do peito, os volumes das árvores média e dominante, o número 
de árvores por hectare, etc). As imagens de Landsat TM foram corrigidas (radiométrica, 
atmosférica e geométrica) e para cada parcela foi recolhida informação espectral, já que os 
centros de cada parcela foram georeferenciados. Com esta informação espectral foram 
calculados índices de vegetação e posterioremente ajustadas equações de regressão para a 
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estimativa dos parâmetros dendrométricos, usando os índices de vegetação como variáveis 
independentes. Os resultados demonstraram que alguns parâmetros dendrométricos de 
povoamentos de Pinus pinaster podem ser estimados. O índice de qualidade, o diâmetro à altura 
do peito e as alturas média e dominante apresentaram os melhores resultados.  
Palavras-Chave: Pinus pinaster; variáveis dendrométricas; deteção remota; índices de vegetação; 
estimativa 
 
Estimation de Paramètres Biophysiques de Peuplements de Pinus pinaster au Nord du 

Portugal à l'Aide d'Images LANDSAT TM 

Résumé. La recherche dans le domaine des images de télédétection de précision, qui se réfèrent 
à des peuplements forestiers et qui permettent, dans un même temps, estimer des paramètres 
biophysiques, s'est accrue ces dernières années. En août 1997, on a défini 42 parcelles dans le 
but d'analyser l'utilisation des images Landsat TM et les indices de végétation dans l'estimation 
des paramètres biophysiques des peuplements de Pinus pinaster, pour obtenir, ainsi, des valeurs 
sur le terrain du LAI, les caractéristiques des peuplements (ex: le diamètre au niveau poitrine; le 
volume de l'arbre) et recueillir des données radiométriques. Les parcelles d'échantillonnage ont 
été déterminées au moyen d'un GPS. Après ce travail sur le terrain, on a soumis une image 
Landsat TM à des techniques de traitement d'images, et les indices de végétation ont alors été 
calculés. Utilisant les indices de végétation les mieux corrélés aux paramètres biophysiques et 
utilisant ceux-ci comme variable indépendante, plusieurs équations de régression ont été 
définies afin de créer des modèles mathématiques qui puissent être utilisés dans l'évaluation 
des paramètres biophysiques. Les résultats ont démontré que les paramètres biophysiques des 
peuplements de Pinus pinaster peuvent être définis au moyen d'indices de végétation provenant 
d'image Landsat TM, dont les meilleurs résultats obtenus ont été l'indice du terrain, le diamètre 
au niveau poitrine et la hauteur moyenne et dominante. 
Mots clés: Paramètres biophysiques et forestiers; télédétection; indices de végétation; 
estimation 
  
 

Introduction 

 
All projections indicate that the 

demand for forest products will increase 
worldwide. However, the forest surface 
is continually decreasing. This 
phenomenon puts greater pressure on 
remaining forests, thereby increasing the 
need for sound management policies (DE 

WULF et al., 1990) and also a spatially 
explicit knowledge of forest resources is 
essential to support the sustainable use 
of wood as a fuel for producing energy 
(LASSERRE et al., 2001), and manage 
forest in general. 

First of all, any forest policy relies on 
a good knowledge of forest areas. 
According to TROTTER et al. (1997), the 
use of traditional methods in forest 

inventory are currently both too 
expensive and too time consuming, 
considering the capital return with the 
sale of the woody. The need to reduce 
the cost of forest inventory has prompted 
much research in to the use of 
information from aerial and satellite 
digital images. In general, there is a high 
potential in applying it in remote sensing 
and especially in satellite images, as a 
tool for inventories, monitoring and 
management of forest areas (JUSOFF and 
SOUSA, 1997). LASSERE et al. (2011) 
describes the potential of integrating 
remotely sensed data and sample based 
forest inventories. They have concluded 
that it is possible to estimate the biomass 
of coppice forest in the test area with 
good accuracy level. 
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The aerial and satellite remote sensing 
are required for wide converge of 
planning and policy implementations of 
biomass feedstock production systems 
(AHMED et al., 2011), and also for other 
dendrometric variables. Studies to use 
satellite images in forest inventories have 
been carried out for some time, mainly in 
homogeneous stand areas, but it is only 
recently that works with a quantitative 
aspect have appeared, due to the 
increased difficulties of these studies 
(LILLESAND and KIEFER, 1994). Studies 
with a quantitative aspect aim at the 
analysis of the possibility of determining 
mathematical relationships between 
digital values of an image and stand 
characteristics (HAMAR et al., 1996; 
HERNÁNDEZ et al., 2012; LOPES et al., 
2009). The use of multispectral satellite 
data to infer quantitative forest stand 
parameters has not yet yielded 
operational applications (DE WULF et al., 
1990). Nevertheless more research is 
required for improved applications and 
to quantify the precision of methods.  

This study contributes to a better 
understanding of the potential of using 
Landsat TM satellite imagery to estimate 
dendrometric parameters of Pinus 
pinaster Ait. stands. The variables 
analysed were: the volume per hectare 
(V); the basal area per hectare (G); 
number of trees per hectare (N); age (t), 
average diameter at breast height (dg); 
average height (hg); dominant height 
(hdom); site index (SI); and the leaf area 
index (LAI).  

This study was developed in an area 
10 x 6 Km to the north of Vila Real, 
Portugal, where Pinus pinaster Ait. stands 
dominate. In addition, in this study area, 
the Pinus pinaster Ait. tends to be 
continuous and homogenous, which can 
be important to easily get tendencies of 

their spectral behaviour, which could be 
better captured by remotely sensed data. 

 
Background 
 

Traditional inventories require a 
meticulous and sustained work plan 
before fieldwork to collect data. Field 
data collection is expensive and takes a 
lot of time. Nowadays, all new 
technologies which could provide 
reduction in time and/or costs are 
interesting and necessary research areas. 

To infer forest stand parameters from 
multispectral satellite data is complex, 
given the numerous variables governing 
canopy reflectance compared with the 
small amount of independent variables 
available from the images (BARET et al., 
1995). According to LOPES (1999) this 
happens because traditional forest 
inventory variables, such as the number 
of trees per hectare, tree height, tree stem 
diameter and volume, are not the most 
important factors which determine the 
reflectance of a stand. They suggested 
instead canopy closure, leaf area index, 
species composition and background 
reflectance as well as the height of the 
tree layer and needle age distribution. 
Despite these limitations, results from 
RIPPLE et al. (1991) and TROTTER et al. 
(1997) presented a negative correlation 
between the forest wood volume stand 
with all the SPOT bands and also with the 
Landsat TM bands, except with near 
infrared. The relationship between 
volume per unit area and the near 
infrared has been allowing to obtain 
different results, with some studies 
identifying a positive correlation 
(SPANNER et al., 1990), some negative 
(RIPPLE et al., 1991) or no significant 
correlation (DE WULF et al., 1990; 
FRANKLIN, 1986). 
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For the basal area, DE WULF et al. 
(1990) did not find any significant 
correlation between this parameter and 
any individual band reflectance. 
FRANKLIN (1986) concluded that the 
visible part of the spectrum is the region 
that is highly correlated with the basal 
area. BROCKHAUS and KHORRAM (1992) 
observed that the middle infrared band, 
from the SPOT, and bands 2, 3, 4, 5 and 7, 
from Landsat TM images, presented 
significant correlations with the basal 
area. 

With regard to density, i.e. the 
number of trees per hectare, DE WULF et 
al., (1990) concluded that it was possible 
to estimate, with acceptable accuracy 
(between 60% and 70%), from the SPOT 

panchromatic band (which covers green, 
red and near infrared). Also BAULIES and 
PONS (1995) concluded that it was 
possible to estimate density, using 
simultaneous information from green, 
red and near infrared, while COHEN et al. 
(1995) used the third main component 
from Landsat TM image and found 
determination coefficients around 0.52. 

Trying to estimate age in a Pinus nigra 
Aid stand, with panchromatic and 
multispectral SPOT imagery DE WULF et 
al. (1990) did not find any correlation 
between any part of the electromagnetic 
spectrum and age. COHEN et al. (1995) 
also have tried to estimate stand age 
classes in conifer mixed stands, using 
only Landsat TM images, and they also 
couldn't found relevant conclusions. 
More promising results were found by 
BROCKHAUS and KHORRAM (1992), in a 
mixed stand with conifer predominating 
and using Landsat TM and multispectral 
SPOT imageries, they concluded that in 
Landsat TM images, green, red, near and 
middle infrared bands presented 
significant correlations with age classes. 

The best results were achieved at middle 
infrared (bands 5 and 7) with correlation 
coefficients of about 0.62 and 0.59.  

When using SPOT imagery, 
BROCKHAUS and KHORRAM (1992) did 
not prove a significant correlation 
between age and any available bands; 
COHEN et al. (1995) obtained better 
results when they adjusted linear models 
to the third main component as the 
independent variable, with determina-
tion coefficients around 0.66. 

For average diameter, DE WULF et al. 
(1990) and ARANHA (1998) did not find 
any correlation between this variable and 
any band from SPOT HVR, while BAULIES 

and PONS (1995) found that the visible 
wavelength, especially green and red, 
allowed for good prediction models. 
COHEN et al. (1995) found a 
determination coefficient of 0.52 when 
they used the third main component as a 
prediction variable, using Landsat TM 

images. 
When estimating average height, the 

best linear models obtained by COHEN et 
al. (1995) presented a 0.55 determination 
coefficient and a RMSE of 0.233m. They 
had used the third principal component, 
as a predicted variable, which represents 
the contrast between the first four bands 
(from visible and near infrared) and the 
last two (middle infrared), according to 
HORLER and AHERN (1986). 

Finally, when studying leaf area 
index, a parameter which is essential to 
modeling the processes occurring in the 
soil-plant-atmosphere continuum, 
according to ZARATE-VALDEZ et al. 
(2012), CLEVERS (1988) concluded that 
infrared was the best wavelength for its 
estimation. BOUMAN (1992) adjusted 
predicting models from green and near 
infrared, using NDVI and the simple ratio 
between these two wavelengths, and 
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obtained standard errors between 0.15 
and 0.25. Nevertheless, he pointed out 
that there would be an improvement in 
these results if a red instead of a green 
wavelength were used. For HALL et al. 
(1996) red and infrared are the best part 
of the electromagnetic spectrum to 
estimate LAI. Using ATM imagery, 
LUCAS (1995) tried to estimate LAI using 
vegetation indices as predicting 
variables. He concluded that it was 
possible to evaluate a forest stand 
parameter from these images and that 
NDVI was the best vegetation index 
(RMSE = 2.21), but all the vegetation 
indices tested, covering the red and near 
infrared, have shown a high potential for 
evaluating this parameter. Finally, 
FASSNACHT et al. (1997) obtained 
correlation coefficient values of 0.96 and 
a RMSE of 0.315 when they used, 
simultaneously, red, near and middle 
infrared, in models adjusted for conifers. 
VALDEZ et al. (2012) also used NDVI as 
the prediction variable to estimate LAI 

and found a high correlation (0.80) 
between the MODIS measured LAI and 
selected Landsat derived vegetation 
indexes (VI). 

In this work we want to validate 
results found with the previous works 
for the main Portuguese forest species, 
the Pinus pinaster Ait., not only in 
economic terms but also because these 
stands occupy a significant percentage of 
the forested area in this country. This 
species presents some peculiarities 
specially related with the crop that very 
frequently is not dense, which facilitates 
the interference of the inferior levels of 
the forest and of the soil. 
 
Methodology 

 
An aerial photo model of 42 plots was 

built based on false colour infrared aerial 
photographs from 1995. The inventory 
work of plots took place during July and 
August in 1997. GPS was used to 
establish the correct position of the 
centre of each plot. 

A sub image of 545 columns and 464 
lines containing the test sites was 
cropped from a 1997 Landsat TM satellite 
images. 

The method used in the image 
atmospheric correction was the Dark 
Object Subtraction Technique proposed 
by CHAVEZ (1988, 1989). For the 
geometric correction a none parameter 
model was applied as mentioned by 
PALÁ and PONS (1995) using visible 
ground control points in the image with 
well known positioning coordinates. 

With the centre of each plot 
identified, the spectral signatures were 
collected for each one from the TM 

imageries. Next, around 70 vegetation 
indices were determined according to the 
references collected by LOPES (1999). 

The Pearson correlation matrix 
between the reflectance of each band, 
vegetation indices and dendrometric 
variables was analysed, in order to find 
the best vegetation indices more 
correlated with each one. 

The prediction models for each forest 
stand parameter (dg, G, hdom, hg, SI, LAI, 
N, t, and V) were adjusted with Systat 
using as independent variables the six 
vegetation indices better correlated with 
each stand parameter. In a first stage all 
the data were used but considering the 
poor results achieved, data was then 
divided into two groups: stands with 
more, or with less than 20 years of age. 

Statistics used for selecting the best 
prediction models were the coefficient of 
determination, the correlation coefficient 
and the estimation standard error. While 
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the first two statistics only allow the 
selection of the best equation into each 
linear and non linear group, the last 
parameter allows for the comparison of 
all equations, no matter which group 
they belong to. So the estimation 
standard error is the most significant in 
the selection of the best equation and 
was defined according to SCHAEGEL 

(1981): 

pn

estimatedparameterobservedparameter

yxs

2
)(

,  

where n is the number of observations 
and p the number of the parameters of 
the model. The main goal of these 
equations was to determine in which 
way each forest stand parameter could 
be predicted, so the model that presents 
the lowest estimation standard error was 
the one selected. 

To validate each selected model, data 
from 40 plots was used, collected by 
ARANHA (1998), from the same study 
area. 
 
Results 

 
The Pinus pinaster stands age span 

from 11years to 54 years old (Table 1). 
This is an area with a relative low 
quality, if we note that at 35 years old the 
average height is only 16.2m. 

From the analysis of Table 1, it can be  
 

seen that the forest stands are very 
heterogeneous, as proved by the great 
spread of the variation coefficient (VC), 
even if in this area they seem to be more 
homogeneous, as previously reported. 
This is especially relevant in the number 
of trees by hectare, with the youngest 
stands presenting high density and with 
some of the oldest having very low 
density. This latter situation poses a 
problem for this type of work, especially 
because of the huge contribution of 
background reflectance to the global 
reflectance of these areas.  

Table 2 summarizes the correlations 
between dendrometric variables and 
reflectance in the seven bands of Landsat 
TM imagery. For a freedom degree of 42, 
the correlation coefficient is significant 
for a level of 0.385 and 0.289, respectively 
for a 0.01 and 0.05 probability. 

As Table 2 shows, dendrometric 
variables do not generally present a 
significant correlation with individual 
band reflectance, except for the 
correlation between the site index and 
the blue wavelength (TM1 band). It is 
also important to mention that according 
to RIPPLE et al. (1991) and TROTTER et al. 
(1997), volume presents negative 
correlations with all the other bands 
(even if as in this actual case they are not 
significant), except with near infrared. 

 
Table 1 – The main dendrometric characteristics of the Pinus stand 

 

 Maximum Average Minimum 
VC 
(%) 

t (years) 54 31 11 45 

N (nº of trees/ha) 5975 1289 240 97 

V (m3/ha) 369.3 138.9 14.2 67 

SI (m) 24.7 16.2 12.5 15 
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Table 2 - Pearson Correlation between dendrometric variables and average reflectance over 

the 7 bands of the Landsat TM imagery 
 

 TM1 TM2 TM3 TM4 TM5 TM6 TM7 

V  -0.160 -0.138 -0.232 0.159 -0.099 -0.022 -0.157 

G -0.189 -0.159 -0.231 0.168 -0.164 -0.215 -0.219 

N -0.259 -0.236 -0.203 -0.187 -0.299 -0.325* -0.264 

t -0.169 -0.125 -0.184 0.062 -0.051 0.128 -0.122 

dg 0.022 0.062 -0.005 0.211 0.148 0.168 0.069 

hg -0.074 -0.077 -0.154 0.150 0.015 0.070 -0.061 

hdom 0.046 0.049 -0.017 0.264 0.138 0.092 0.048 

SI 0.350* 0.280 0.292* 0.276 0.269 -0.142 0.263 

LAI -0.188 -0.143 -0.199 0.137 -0.154 -0.223 -0.176 

* - significant; P-Value < 0.05 
 
 

Table 3 presents only the two 
vegetation indices best correlated with 
each stand parameter analysed and the 
best prediction model are presented in 
Table 4. In Table 4, the column "Global" 
represents results from the first adjusting 
step, when all the data were used. 
Columns "t<20" and "t>20" are related to 
partial results from the second step, 
when data was divided into two age 
classes.  

The results of this study allows us to 
conclude that vegetation indices are 
good independent variables for 
predicting models of forest stand 
characteristics (Table 3), when 
comparing with reflectance values of 
individual bands (Table 2). Although, the 
obtained results also allow us to 
conclude that vegetation indices should 
be chosen rigorously. As a vegetation 
index stabilises reflectance and limits the 
interference of disturbing factors, there is 
the idea that any of them can be used in 
all cases. For example, NDVI is 

commonly used because it is one of the 
most disclosed but in this study NDVI 

was not even selected as one of the best 
vegetation indices, for any of the 
parameters analysed (Table 3). 

Data from 49 plots were used to 
validate prediction models, for each 
stand parameter (LOPES, 1999). Field 
data collection and spectral signatures 
were taken in 1995 in the same region, 
but over a larger area. The satellite image 
used was also a Landsat TM. The results 
presented in Figure 1 coincide with those 
obtained during the adjustment.  

When analysing the best prediction 
models for each dendrometric variable 
(Table 4), it can be observed that the 
worst results were found for the volume 
per hectare. Even the data division in 
two age groups has not changed this 
behaviour. All volume prediction models 
presented correlation coefficients less 
than 0.350, which is inferior to the results 
presented by RIPPLE et al. (1991) (-0.55; 
0.76) and ARANHA (1998) (0.76).  
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Table 3 – Pearson correlation between the two vegetation indices better correlated and each 

forest stand parameter 
 

Dendrometric 
Variable 

VI RPearson Mathematic Expression 

V IVT5 0.565 G-R 

 PVI(L) -0.496 (R-0.7335NIR-2.752)/((0.7335^2+1)^0.5) 

G PVI(L) -0.505 (R-0.7335NIR-2.752)/((0.7335^2+1)^0.5) 

 WDVI(L) -0.505 R-0.7335NIR 

N NDVIMIR 0.366 (MIR2-MIR1)/(MIR2+MIR1) 

 MVI -0.370 MIR1/MIR2 

T IVT5 0.375 G-R 

 MVI 0.316 MIR1/MIR2 

dg MVI 0.438 MIR1/MIR2 

 NDVIMIR -0.428 (MIR2-MIR1)/(MIR2+MIR1) 

hg IVT5 0.447 G-R 

 PVI(L) -0.386 (R-0.7335NIR-2.752)/((0.7335^2+1)^0.5) 

hdom MVI 0.448 MIR1/MIR2 

 NDVIMIR -0.433 (MIR2-MIR1)/(MIR2+MIR1) 

IQ IVT5 0.447 G-R 

 MVI 0.345 MIR1/MIR2 

LAI PVI(L) -00.427 (R-0.7335NIR-2.752)/((0.7335^2+1)^0.5) 

 WDVI(L) -0.427 R-0.7335NIR 
where:  
RPearson is the Pearson correlation coefficient, B is the blue wavelength, G is the green wavelength, 
R is the red wavelength, NIR is the near infrared wavelength, MIR1 is the one of the middle 
infrared bands (band 5), and MIR2 is the other middle infrared band (band 7). (Note: the symbol 
(L) after a vegetation index designation means that were used the soil line parameters adapted to 
local conditions). 

 

 
Figure 1 – Standard error deviation, in percentage of the average value for each variable, 

obtained from the validation stage 
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Table 4 - Some of the best prediction models for each dendrometric variable  
 

Stand 
Parameter 

Work 
Phase 

Independent 
Variable 

Equation syx 

 Global IVT5 V=152.029*IVT5^0.376 75.9 
V t<20 PVI(L) V=56.548*exp(0.391/PVI(L)) 45,6 

(m3/ha) t>20 PVI(L) V=*227.925*exp(0.762/PVI(L)) 68 

 Global PVI(L) G=27.48-119.842*exp(PVI(L)) 8.2 
G t<20 PVI(L) G=25.017-121.993*exp(PVI(L)) 9.5 

(m2/ha) t>20 PVI(L) G=29.561-119.842*exp(PVI(L)) 6.9 

 Global MVI N=1.203*exp(23.947/MVI) 1172 
N t<20 MVI N=1541.132+24779.19*exp(-MVI) 998 

(árv,/ha) t>20 MVI N=60.19*exp(8.09/MVI) 619 

 Global MVI t=0.801*MVI^2.9444) 13 
t t<20 MVI t=45.971*MVI^-0.878 3 

(anos) t>20 MVI t=74.19-9.575*MVI 8 

 Global MVI dg=1/(-0.148+0.695MVI^-1) 7.8 
dg t<20 MVI dg=1/(0.08+0.062MVI^-1) 2.1 

(cm) t>20 MVI dg=1/(0.005+0.122MVI^-1) 3.4 

 Global PVI(L) hg=1/(0.282+0.054PVI(L)) 4,2 
hg t<20 PVI(L) hg=1/(0.505+0.093PVI(L)) 2.2 
(m) t>20 PVI(L) hg=1/(0.169+0.026PVI(L)) 2.6 

 Global MVI hdom=-30.661+12.8MVI 4.5 
hdom t<20 MVI hdom=21.804-3.846MVI 1.6 

(m) t>20 MVI hdom=-3.256+5.653MVI 1.4 

 Global MVI IQ=1/(0.048+0.048MVI^-1) 2.5 
IQ t<20 IVT5 IQ=18.21*exp(-0.031/IVT5) 1.3 
(m) t>20 MVI IQ=1/(-0.007+0.476MVI^-1) 1.9 

 Global WDVI(L) LAI=1/(0.235-0.238WDVI(L)^-1) 0.52 
LAI t<20 WDVI(L) LAI=1/(0.138-0.452WDVI(L)^-1) 0.54 

 t>20 WDVI(L) LAI=1/(0.313-0.196WDVI(L)^-1) 0.29 

 
Basal area had the similar low 

correspondence as volume per hectare, 
even with the division of the data into 
two main age groups.  

Also the results obtained for the leaf 
area index were not encouraging, if 
compared with the expectations 
presented in the literature review 
(ARANHA, 1998; BOUMAN, 1992; DE 

WULF et al., 1990; ZARATE-VALDEZ et al., 
2012). These weak results could be 
explained by LAI heterogeneity of the 
forest stands, and also the small, 
irregular and low density crop, allowing 
for the interference of disturbance 
factors, such as soil, shrubs and 

herbaceous stratums, in the final 
reflectance captured by the sensors. 
When studding the effects of soil type 
and plant architecture on Lai estimation 
from remotely sensed data, 
DARVISHZADEH et al. (2008) confirmed 
that the spectral contrast between leaves 
and soil background determines the 
strength of the LAI-reflectance 
relationship. According to them, in 
general, the relationship between LAI 

and VIs was deemed to be stronger in 
light soil than in dark. The results 
suggest that, when using remote sensing 
Vis for LAI estimation, not only is the 
choice of VI of importance but also prior 
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knowledge of plant architecture and soil 
background. In this case, the structure of 
this Pinus species is very challenging as 
it is a heterogeneous and open crown, 
thus allowing the influence of soil and 
shrubs background. This was not 
analysed in this study and perhaps a 
better understanding of this would allow 
to improve these results. 

 
Conclusions and final comments  

 
As shown in the results section above, 

it is possible to conclude that the more 
limited results were obtained for the 
volume, the basal area and the number of 
trees per hectare. The best results were 
obtained in the estimation of the site 
index, average age and average height. 

Nevertheless, for the best estimations, 
it is always possible to discuss if whether 
the results reached are enough to 
estimate dendrometric parameters using 
Landsat TM satellite imageries. The issue 
depends only on each case and its 
specific objectives. 

Even without being as pessimistic as 
DE WULF et al. (1990), who said it is 
unrealistic to expect that digital satellite 
data will routinely serve to directly infer 
forest inventory parameters with high 
accuracy, it is not possible to be 
excessively optimistic, yet. The fact is 
that for the general conditions of the 
Portuguese forest nobody could expect 
that satellite images could be used, with 
high accuracy on that they could totally 
substitute for the traditional forest 
inventories. The main fact why this work 
area was chosen was because of its 
apparent homogeneity, which has been 
denied by fieldwork collection. The 
heterogeneity of this study area is 
common to all Portuguese forests. 

In conclusion, it is important to say 

that research in remote sensing should 
increase in order to test new 
technologies, new vegetation indices and 
to better understand the spectral 
behaviours of forest species, as well as 
the possibility of using new images. The 
new recently available satellite 
programs, with better spatial resolutions, 
as predicted by FRITZ (1996), as well as 
the recent development of new satellite 
correction technologies, as mentioned by 
ROY et al. (1997), or the improvement of 
new methods, like the ones described by 
HERNÁNDEZ et al. (2012) may represent 
new encouragement and indicate ways 
to improve research investigations. 

Perhaps in the near future it will be 
possible to became more optimistic than 
DE WULF et al. (1990) and that remote 
sensing data will be used in a routine 
and precise way, providing accurate data 
estimations, like AHMED et al. (2011), also 
perspectivate. 
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