Uniform type structures

Teresa Abreu[•], Eusébio Corbacho^{••}

tabreu@ipca.pt, corbacho@uvigo.es

Abstract. In a non-empty set X a filter Q on $X \times X$ consisting of reflexive relations, which satisfies:

 $\forall x \in X \ \forall Q \in Q, \exists P \in Q \text{ such that } P \circ P[x] \subset Q[x]$

is called local quasi-uniformity. If we require the symmetry condition then we obtain a local uniformity. These concepts were introduced by Fletcher-Lindegren(1974) and Williams(1972) respectively.

We will discuss the possibility of extending the known results about (quasi)uniform spaces to local (quasi)-uniform spaces

Keywords: quasi-uniformity, local quasi-uniformity, local quasi-uniform space, quasi-uniform space.

[•] ESG- Escola Superior de Gestão, Instituto Politécnico do Cávado e do Ave (IPCA)

^{••} UV – Universidade de Vigo

1. Introduction

If X is a non-empty set a filter Q on $X \times X$ of reflexive relations, which satisfies the divivisibility condition :

$$\forall Q \in Q, \exists P \in Q \text{ such that } \top (P) \circ P \subset Q$$

is called uniformity in X.

The notion of uniform space was introduced by Weil (1937) as a generalization of the concept of a metric space (see 3.1).

Removing the symmetry Nachbin (1948a), Nachbin (1948b), and Nachbin (1965) obtained the concept of semi-uniform structures. Later, the term quasi-uniformity suggested by Császár (1960) was commonly accepted.

Williams (1972) and Fletcher-Lindgren (1974) introduced the notion of local uniformity and local quasi-uniformity, respectively, localizing the divisibility condition:

 $\forall x \in X \ \forall Q \in Q \ \exists P \in Q \text{ such that } P \circ P[x] \subset Q[x].$

If Q is a quasi-uniformity, it is known that the conjugate filter Q^{\top} is always a quasi-uniformity. In this paper we give an example of a local quasi-uniformity Q such that conjugate filter Q^{\top} is not a local quasi-uniformity and other example of a local quasi-uniformity which is not quasi-uniformity and the conjugate filter Q^{\top} is a local quasi-uniformity. In this case we say that Q is bilocal quasi-uniformity.

The set all local quasi-uniformities in X, LQ(X), with respect to the set-theoretic inclusion \subset is a partially ordered set, with one smallest element, the indiscrete uniformity $\{X \times X\}$ and one biggest element, the discrete uniformity $\{R \in P(X \times X) | R \supset \Delta\}$, hence (LQ(X), \subset) is a complete lattice.

For a given family of local quasi-uniformities $(Q_i)_{i \in I}$, we study the local quasiuniformities $\inf_{i \in I} Q_i$ and $\sup_{i \in I} Q_i$. In particular if Q is bilocal quasi-uniformity, we show that $\inf \{Q, Q^{\top}\}$ and $\sup \{Q, Q^{\top}\}$ are local uniformities.

We presented also, some topological aspects of local quasi-uniform spaces.

2. Introductory concepts

In all this paper X be a non-empty set.

For X we define **filter**, \mathbb{F} , as a non empty set family of subsets of X such that:

- ✓ Ø∉*I*F.
- $\checkmark \quad \text{If } A, B \in \mathbb{F} \Rightarrow A \cap B \in \mathbb{F}.$
- $\checkmark \text{ If } A \in \mathbb{F} \text{ and } A \subset B \Rightarrow B \in \mathbb{F}.$

We define **filter base**, \mathcal{B} as a non empty set family of subsets of X provided: $\checkmark \quad \emptyset \notin \mathcal{B}$.

 $\checkmark \text{ If } A, B \in \mathbb{B} \implies \exists C \in \mathcal{B} \text{ such that } C \subset A \cap B.$

We can observe that, the whole filter is filter base and a filter base generates the filter

$$F(\mathcal{B}) = \{A \subset X : \exists B \in \mathcal{B} \text{ such that } B \subset A\}.$$

Remark 2.1

1. Let (X, τ) be a topological space, and $\mathcal{N}_{\tau}(x)$ the family of all neighbourhoods of $x \in X$, then $(\mathcal{N}_{\tau}(x))_{x \in X}$ has the following properties:

- ✓ $\mathcal{N}_{\tau}(x)$ is a filter, $\forall x \in X$.
- \checkmark $x \in X$, $E \in \mathcal{N}_{\tau}(x)$ implies $x \in \mathcal{N}_{\tau}(x)$.
- \checkmark $x \in X, E \in \mathcal{N}_{\tau}(x)$ implies that $\exists F \in \mathcal{N}_{\tau}(x)$ such that $\forall y \in F, E \in \mathcal{N}_{\tau}(y)$.
- 2. The following converse of (1) is true:

If X is a non-empty set and with every $x \in X$ associated a family $\mathcal{N}(x)$ of subsets of X, with the following properties:

- $\checkmark \quad \mathcal{N}(x) \text{ is a filter, } \forall x \in X.$
- \checkmark $x \in X$, $E \in \mathcal{N}(x)$ implies $x \in \mathcal{N}(x)$.
- ✓ $x \in X, E \in \mathcal{N}(x)$ implies that $\exists F \in \mathcal{N}(x)$ such that $\forall y \in F, E \in \mathcal{N}(y)$. then there is a unique topology $\tau \in X$, such that $\mathcal{N}_{\tau}(x) = \mathcal{N}(x)$, for each $x \in X$.

Let $\mathcal{P}(X \times X)$ be the collection of all subsets of $X \times X$. Any members of $\mathcal{P}(X \times X)$ is called a (binary) relation on X.

We denote by \top the bijection:

$$\top : X \times X \to X \times X$$
$$\top (x, y) = (y, x).$$

For a $Q \in \mathcal{P}(X \times X)$ we write $\top (Q) = \{\top(x,y): (x,y) \in Q\}$ and call $\top (Q)$ the **conjugate** of Q.

Usually in the literature the notation Q^{-1} is used instead of \top (Q). The relation \top (Q) is called also converse relation to Q (see Clifford-Preston (1961), p.14).

For P, $Q \subset X \times X$ we write

$$\mathbf{P} \circ \mathbf{Q} := \{ (x, y) \in X \times X : \exists z \in X, (x, z) \in \mathbf{Q}, (z, y) \in \mathbf{P} \}$$

The relation $P \circ Q$ is called the **composition** of P and Q. In $\mathcal{P}(X \times X)$ the composition \circ can be viewed as a binary operation.

We write $\Delta = \Delta_X = \{(x, x) \text{ with } x \in X\}$, and call Δ the diagonal set. A relation Q is called:

- ✓ reflexive iff $\Delta \subset Q$.
- ✓ Symmetric iff \top (Q) = Q.
- ✓ anti-symmetric iff $Q \cap \top (Q) = \Delta$.
- ✓ Transitive iff $Q \circ Q \subset Q$.

For a relation $Q \in \mathcal{P}(X \times X)$, and an element $x \in X$, we define the (vertical cross-)sections of Q at x as follows:

$$Q[x] := \{y \in X : (x, y) \in Q\}$$

and the (vertical cross-)sections at $A \subset X$, by the equality:

$$\mathbf{Q}[A] := \bigcup_{x \in A} \mathbf{Q}[x].$$

3. Uniform type structure

Let X be a non-empty set and Q be a filter on $X \times X$ consisting of reflexive relations $(\Delta \subset Q, \forall Q \in Q)$, we say that Q is a:

Local Quasi-uniformity if

 $\forall x \in X, \forall Q \in Q \quad \exists P \in Q \text{ such that } P \circ P[x] \subset Q[x].$

Local Uniformity if

 $\forall x \in X, \forall Q \in Q, \ \top (Q) \in Q \text{ and }, \exists P \in Q \text{ such that } P \circ P[x] \subset Q[x].$

Quasi-Uniformity if

 $\forall Q \in Q \quad \exists P \in Q \text{ such that } P \circ P \subset Q.$

Uniformity if

 $\forall \mathbf{Q} \in Q \quad \exists \mathbf{P} \in Q \text{ such that } \top (\mathbf{P}) \circ \mathbf{P} \subset \mathbf{Q}.$

The pair (X,Q) is called a local quasi-uniform space (resp. local uniform space, quasi-uniform space, uniform space) when Q is a local quasi-uniformity (resp. local uniformity, quasi-uniformity, uniformity) and the members of Q will be called entourages ².

Example 3.1

Let X be a non empty set. We say that a mapping $\rho: X \times X \to [0, +\infty[$ is a pseudo-quasi-metric if it satisfies:

 $\checkmark \quad \rho(x,x) = 0, \forall x \in X .$

 $\checkmark \quad \rho(x, y) \le \rho(x, z) + \rho(z, y), \forall x, y, z \in X.$

The pair (X, ρ) will be called pseudo-quasi-metric space.

Consider in $X \times X$ the family

 $Q_{\rho} = \{ Q_{\rho}(\varepsilon) \text{ with } \varepsilon > 0 \} \text{ with } Q_{\rho}(\varepsilon) = \{ (x, y) \in X \times X : \rho(x, y) < \varepsilon \}).$

²Some authors use the term "vicinity" instead of entourage (see Picado (1998)).

It's easy to see that:

- ✓ Q_{ρ} is a filter base.
- $\checkmark \quad \rho(x,x) = 0, \forall x \in X \text{ is equivalent to } \Delta \subset Q_{\rho}(\varepsilon), \forall \varepsilon > 0.$
- ✓ $\rho(x, y) \le \rho(x, z) + \rho(z, y), \forall x, y, z \in X$ implies that:

$$\forall \varepsilon > 0, \exists \delta > 0$$
, such that $Q_{\rho}(\delta) \circ Q_{\rho}(\delta) \subset Q_{\rho}(\varepsilon)$.

For a pseudo-quasi-metric, ρ , $\mathcal{F}(Q_{\rho})$ is a quasi.-uniformity.

In following remark, we are giving equivalent characterizations of local uniformities and uniformities.

Remark 3.2

Let X be a non-empty and, Q be a filter on $X \times X$, consisting of reflexive relations.

- 1. The following statements are equivalent.
- $\checkmark Q$ is a local uniformity.

$$\checkmark \forall \mathbf{Q} \in Q \quad \top \ (\mathbf{Q}) \in Q \text{ and } \forall x, \forall \mathbf{Q} \in Q \quad \exists \mathbf{P} \in Q : \top \ (\mathbf{P}) \circ \mathbf{P}[x] \subset \mathbf{Q}[x].$$

2. The following statements are equivalent

- ✓ Q is a uniformity.
- ✓ $\forall Q \in Q$ $\exists S$ symmetric entourage such that $S \circ S \subset Q$.
- $\checkmark \quad \forall \mathbf{Q} \in Q \quad \top (\mathbf{Q}) \in Q \text{ and } \quad \forall \mathbf{Q} \in Q \ \exists \mathbf{P} \in Q : \mathbf{P} \circ \mathbf{P} \subset \mathbf{Q}.$

The next remark gives some properties of quasi-uniform space. **Remark 3.3**

If (X,Q) is a quasi-uniform space then:

- 1. (X, Q) is a local quasi-uniform space.
- 2. The filter $Q^{\top} = \{\top (Q) \text{ such that } Q \in Q\}$ is quasi-uniformity. It is called the **conjugate quasi-uniformity** of Q.
- 3. *Q* is an uniformity if and only if $Q = Q^{\top}$.

Remark 3.4

If (X,Q) is a local quasi-uniform space then:

- 1. The filter Q^{\top} may not be a local quasi-uniformity, (see example 3.7).
- 2. Q^{\top} may be a local quasi-uniformity, but Q may not be a quasi-

uniformity (see example 3.8).

We say that Q is a **bilocal quasi-uniformity** if Q is a local quasi-uniformity which Q^{\top} is a local **quasi-uniformity** too, and we that the pair (X,Q) is a **bilocal quasi-uniform space**.

Remark 3.5

If Q is a bilocal quasi-uniformities, then Q is a local uniformity if and only if $Q = Q^{\top}$.

We say that a family \mathcal{B} on $X \times X$ is a:

Local quasi-uniform base if it satisfies the following conditions:

- $b_1^{'}$) \mathcal{B} is a filter basis.
- b_2') $\Delta \subset B$, $\forall B \in \mathcal{B}$.
- $b_3^{'}$ $\forall x \in X, \forall B \in \mathcal{B} \quad \exists C \in \mathcal{B} \text{ such that } C \circ C[x] \subset B[x].$

Local uniform base if it satisfies the following conditions:

- b_1) \mathcal{B} is a filter basis.
- $(b_{2})^{\prime} \quad \Delta \subset B, \quad \forall B \in \mathcal{B}.$
- b_3^{\prime}) $\forall B \in \mathcal{B} \quad \exists C \in \mathcal{B} \text{ such that } C \subset \top (B)$
- $b_{4}^{'}$) $\forall x \in X$, $\forall B \in \mathcal{B} \quad \exists C \in \mathcal{B} \text{ such that } C \circ C[x] \subset B[x]$.

Quasi-uniform base if it satisfies the following conditions:

- b_1 \mathcal{B} is a filter basis.
- $b_2)\;\Delta\subset \mathbf{B}\quad \forall \mathbf{B}\in \mathcal{B}\;.$

 b_3) $\forall B \in \mathcal{B} \quad \exists C \in \mathcal{B} \text{ such that } C \circ C \subset B$.

Uniform base if it satisfies the following conditions:

- b_1) \mathcal{B} is a filter basis.
- b_2) $\Delta \subset B$, $\forall B \in \mathcal{B}$.
- b_3) $\forall B \in \mathcal{B} \exists C \in \mathcal{B}$ such that $C \subset \top (B)$
- b_4) $\forall B \in \mathcal{B} \quad \exists C \in \mathcal{B} \text{ such that } C \circ C \subset B$.

If \mathcal{B} is a (local) quasi-uniform base, then $\mathbb{F}(\mathcal{B})^3$ is a unique (local) quasiuniformity for which \mathcal{B} is base.

A family $\mathcal{S} \subset \mathcal{P}(X \times X)$ is a **subbase** of a (local) quasi-uniformty, if the family \mathcal{B} of finite intersections of members of \mathcal{S} is a (local) quasi-uniform base.

Example 3.6

1. For a set X and its subset G we write:

 $S_G = (G \times G) \cup ((X - G) \times X) \subset X \times X$.

It is easy to observe that S_G is a reflexive relation with the property: $S_G \circ S_G = S_G \,.$

Let (X, τ) be a topological space. $S = \{S_G : G \in \tau\}$ is a quasi-uniform subbase (this is easy to see). The quasi-uniformity generated by this family is called by **Pervin quasi-uniformity** associated with the topology τ , and it is denoted by $Q^{Per}(\tau)$ (see Murdeshwar- Naimpally(1966)).

 $^{{}^{3}\}mathbb{F}(\mathcal{B})$ is the filter generated by the filter base \mathcal{B} .

Example 3.7

Write $X = \{0\} \cup \{\frac{1}{n}\}$, with $n \in \mathbb{N}$ and

$$Q_n = \Delta \cup \{(\frac{1}{i}, 0) : i \ge n\} \cup \{(\frac{1}{i+1}, \frac{1}{i}) : i \ge n\} \cup \{(1, \frac{1}{i}) : i \ge n\}$$

and $Q_o = \{Q_n : n \in \mathbb{N}\}.$

It's easy to see that:

✓ $Q_{n+1} \subset Q_n$, for each $n \in \mathbb{N}$, therefore Q_o is a filter base on $X \times X$.

- $\checkmark \quad \Delta \subset Q_n \text{ for every } n \in \mathbb{N}.$
- Let us see that Q_o isn't a quasi-uniformity base.

Fix $Q_1 \in Q_0$ and the pair $(\frac{1}{n'+2}, \frac{1}{n'})$. We have

$$\left(\frac{1}{n'+2},\frac{1}{n'+1}\right) \in \mathbf{Q}_{n'} \text{ and } \left(\frac{1}{n'+1},\frac{1}{n'}\right) \in \mathbf{Q}_{n'}, \forall n' \in \mathbb{N}.$$

Then for every $n' \in \mathbb{N}$, $(\frac{1}{n'+2}, \frac{1}{n'}) \in Q_{n'} \circ Q_{n'}$, however $(\frac{1}{n'+2}, \frac{1}{n'}) \notin Q_1$.

• Let us see that Q_o is a local quasi-uniformity base.

Fix $n \in \mathbb{N}$, we have

$$\begin{split} \mathbf{Q}_n[0] &= \mathbf{Q}_n \circ \mathbf{Q}_n[0] = \{0\} \quad \forall n \in \mathbb{N}; \\ \mathbf{Q}_1[1] &= \mathbf{Q}_1[1] \circ \mathbf{Q}_1[1] = \left\{0, 1, \frac{1}{2}, \ldots\right\}; \\ \mathbf{Q}_n[1] &= \mathbf{Q}_n \circ \mathbf{Q}_n[1] = \{1, \frac{1}{n}, \frac{1}{n+1}, \ldots\}, \quad \forall n > 1. \end{split}$$

Fix $n \in \mathbb{N}$ and k > 1 then:

$$Q_{k+1} \circ Q_{k+1}\left[\frac{1}{k}\right] = \left\{\frac{1}{k}\right\} \text{ hence } Q_{k+1} \circ Q_{k+1}\left[\frac{1}{k}\right] \subset Q_n\left[\frac{1}{k}\right], \forall n \in \mathbb{N}.$$

• Now let us see that Q^{\top} isn't a local quasi-uniformity base.

Observe that: $\top (Q_n) = \Delta \cup \{(0, \frac{1}{i})\}_{i \ge n} \cup \{(\frac{1}{i}, \frac{1}{i+1})\}_{i \ge n} \cup \{(\frac{1}{i}, 1)\}_{i \ge n}.$

Then \top (Q₂)[0] = {0, $\frac{1}{2}, \frac{1}{3}, ...$ } but for every $m \in \mathbb{N}$, we have:

$$\left(0,\frac{1}{m}\right) \in \mathbf{Q}_m \text{ and } \left(\frac{1}{m},1\right) \in \mathbf{Q}_m, \text{ thus}$$

$$1 \in \top (\mathbf{Q}_m) \circ \top (\mathbf{Q}_m)[0], \forall m \in \mathbb{N}, \text{ but } 1 \notin \top (\mathbf{Q}_2)[0].$$

Next we present the example mentioned in remark 3.4 (2).

Example 3.8

Write $X = \{0\} \cup \{\frac{1}{n}\}$, with $n \in \mathbb{N}$, and

$$Q_n = \Delta \cup \{(0, \frac{1}{i}) : i \ge n\} \cup \{(\frac{1}{i+1}, \frac{1}{i}) : i \ge n\}$$

and $Q_o = \{Q_n : n \in \mathbb{N}\}$

Let us see that Q_0 isn't a quasi-uniformity base.

It's easy to see that:

- ✓ $Q_{n+1} \subset Q_n$ for every $n \in \mathbb{N}$, therefore Q is a filter base on X×X.
- $\checkmark \quad \Delta \subset Q_n \text{ for every } n \in \mathbb{N}.$
- Let us see that Q isn't a quasi-uniformity base.

Fix $Q_1 \in Q_0$ and $n' \in \mathbb{N}$. We have:

$$\left(\frac{1}{n'+2},\frac{1}{n'+1}\right) \in \mathbf{Q}_{n'} \text{ and } \left(\frac{1}{n'+1},\frac{1}{n'}\right) \in \mathbf{Q}_{n'}.$$

Then for every $n' \in \mathbb{N}$, we have:

$$\left(\frac{1}{n'+2},\frac{1}{n'}\right) \in \mathbf{Q}_{n'} \circ \mathbf{Q}_{n'}$$
, but $\left(\frac{1}{n'+2},\frac{1}{n'}\right) \notin \mathbf{Q}_1$.

• Now let us see that Q is a local quasi-uniformity base. For each $n \in \mathbb{N}$, we have:

$$Q_n[0] = Q_n \circ Q_n[0] = \{0, \frac{1}{n}, \frac{1}{n+1} \dots\}$$

Now let $k \ge 1$, and $n \ge 1$. We have:

$$Q_k \circ Q_k[\frac{1}{k}] = \{\frac{1}{k}\}$$
 hence $Q_k \circ Q_k[\frac{1}{k}] \subset Q_n[\frac{1}{k}].$

• Let us see that Q^{\top} is also a local quasi-uniformity base.

Notice that $\top (Q_n) = \{\Delta\} \cup \{(\frac{1}{i}, 0) : i \ge n\} \cup \{(\frac{1}{i}, \frac{1}{i+1}) : i \ge n\}.$

	~	6	٦
1	٦.	. 3	<
			3

Since Q is a filter base of reflexive relations, then Q^{\top} is a filter base of reflexive relations, too.

For any $n \in \mathbb{N}$, we know that:

$$\top (\mathbf{Q}_n)[0] = \top (\mathbf{Q}_n) \circ \top (\mathbf{Q}_n)[0] = \{0\}.$$

Now fix $n, k \in \mathbb{N}$, we have:

$$\top (\mathbf{Q}_{k+1}) \circ \top (\mathbf{Q}_{k+1}) [\frac{1}{k}] = \{\frac{1}{k}\} \text{ hence } \top (\mathbf{Q}_{k+1}) \circ \top (\mathbf{Q}_{k+1}) [\frac{1}{k}] \subset \top (\mathbf{Q}_n) [\frac{1}{k}].$$

In this example we introduce several an example of a uniform base and a quasiuniform base.

Example 3.9

a) Let $X = \mathbb{R}$. For $\varepsilon > 0$ denote $U_{\varepsilon} := \{(x, y) \in \mathbb{R}^2 : y - x \in]-\varepsilon, \varepsilon[\}$. The uniformity generated by the base $\{U_{\varepsilon} : \varepsilon > 0\}$ is called **the usual uniformity** of the real line \mathbb{R} .

b) Let $X = \mathbb{R}$. For $\varepsilon > 0$ denote $Q_{\varepsilon} := \{(x, y) \in \mathbb{R}^{2} : y - x \in [0, \varepsilon[\}\}$, then

 $\{Q_{\varepsilon} : \varepsilon > 0\}$ is a quasi-uniform base. The quasi-uniformity **S** in \mathbb{R} generated by this base is the quasi-uniformity induced by the **Sorgenfrey** topology.

We say that a local quasi-uniformity Q is:

weakly locally symmetric at $x \in X$ if for every $Q \in Q$ there is a symmetric entourage $S \in Q$ such that $S[x] \subset Q[x]$.

weakly locally symmetric or point-symmetric if Q is weakly locally symmetric at x, for every $x \in X$.

small-set symmetric at $x \in X$, if (X,Q) is a bilocal quasi-uniformity Q^{\top} is weakly locally symmetric at $x \in X$.

locally symmetric at $x \in X$ if for every $Q \in Q$ there is a symmetric $S \in Q$ such that $S \circ S[x] \subset Q[x]$.

locally symmetric if Q is locally symmetric at x, for every $x \in X$.

The following example of Fletcher-Lindgren (1982) gives us a quasi-uniformity

locally symmetric Q which isn't uniformity.

Example 3.10 Let $X = \{0\} \cup \{\frac{1}{n}\}$, with $n \in \mathbb{N}$ and

$$Q = \{Q_n : n \in \mathbb{N}\} \text{ with } Q_n = \Delta \cup \{(\frac{1}{i}, 0)\}_{i \ge n}.$$

Remark 3.11

- We can find a quasi-uniform version of the last definition in Künzi (2001), but in that case we must assume that Q^T is a local quasi-uniformity as well. In quasi-uniform case this condition always holds.
- We can observe certain similarity between the notions of local uniformity and locally symmetric quasi-uniformity. However these concepts are different, because a local uniformity may not be divisible, and a quasi-uniformity locally symmetric may not contain the converse of any entourage.

Proposition 3.12

Let (X,Q) be a local quasi-uniform space. Q is weakly locally symmetric if and only if for any $x \in X$ and $Q \in Q$ there is an entourage $P \in Q$ such that $\top (P)[x] \subset Q[x]$.

Proof:

Suppose that for each $Q \in Q$ there is an entourage P_1 such that $\top (P_1)[x] \subset Q[x]$. Put $P=Q \cap P_1$ and we will consider the symmetric entourage $S = P \cup \top (P)$. Then $S[x] = \top (P)[x] \cup P[x] \subset Q[x]$. The reciprocal is immediate.

Proposition 3.13

Let (X,Q) be a local quasi-uniform space. Q is a locally symmetric if and only if for any $x \in X$ and for any $Q \in Q$ there is an entourage $P \in Q$ such that $\top (P) \circ P[x] \subset Q[x]$.

Proof:

The first implication is obvious. If $Q \in Q$ and $x \in X$, there are entourages P_1 and P_2 such that $\top (P_1) \circ P_1[x] \subset Q[x]$ and $P_2 \circ P_2[x] \subset Q[x]$. If $P = P_1 \cap P_2$, there is an entourage R_1 such that $\top (R_1) \circ R_1[x] \subset P[x]$.

If $R = R_1 \cap P \subset P$, and $S = \top (R) \cup R$, let us see that $S \circ S[x] \subset Q[x]$. We have: $i \top (R) \circ \top (R)[x] \subset \top (R) \circ \top (R) \circ R[x] \subset \top (R) \circ (P)[x] \subset \top (P) \circ P[x] \subset Q[x]$; $ii R \circ R[x] \subset P \circ P[x] \subset Q[x]$; $iii \top (R) \circ R[x] \subset P[x] \subset P \circ P[x] \subset Q[x]$; $iv. R \circ \top (R)[x] \subset R \circ \top (R) \circ R[x] \subset R \circ (P)[x] \subset P \circ P[x] \subset Q[x]$; Consequently: $(\top (R) \cup R) \circ (\top (R) \cup R)[x] =$

$$= (\top (R) \circ \top (R))[x] \cup (\top (R) \circ R)[x] \cup (R \circ \top (R))[x] \cup (R \circ R)[x] \subset Q[x]. \blacklozenge$$

Let X be a set and LQ(X) be the set of all local quasi-uniformities in X. Then:

- $\mathbf{LQ}(X)$ with respect to the set-theoretic inclusion \subset is a partially ordered set. - In $(\mathbf{LQ}(X), \subset)$ the indiscrete uniformity $\{X \times X\}$ is the smallest element and the discrete uniformity $\{R \in P(X \times X) | R \supset \Delta\}$ is the biggest element. - $(\mathbf{LQ}(X), \subset)$ is a complete lattice.

Let $(Q_i)_{i \in I}$ be a non-empty family of local quasi-uniformities (resp. family of quasi-uniformity) on X. We denote:

- 1. $\inf_{i \in I} (Q_i) = \bigwedge_{i \in I} Q_i$ is the finest local quasi-uniformity (resp. family of quasi-uniformity) contained Q_i , $\forall i \in I$.
- 2. $\sup_{i \in I} (Q_i) = \bigvee_{i \in I} Q_i$ is the coarsest local quasi-uniformity (resp. family of quasi-uniformity) containing Q_i , $\forall i \in I$.

Remark 3.14

Let $(Q_i)_{i \in I}$ be a non-empty family of local quasi-uniformity (resp. family of quasiuniformity) on X. Then

1. $\wedge_{i \in I} Q_i \subset Q_i$ and if there is a local quasi-uniformity (resp. a quasiuniformity) Q such that for any i we have $Q \subset Q_i$, then $Q \subset \wedge_{i \in I} Q_i$.

- 2. $Q_i \subset \bigvee_{i \in I} Q_i$ and if there is a local quasi-uniformities (resp. family of quasiuniformities) Q such that $Q_i \subset Q, \forall i \in I$ then $\bigvee_{i \in I} Q_i \subset Q$.
- 3. $\wedge_{i \in I} Q_i := \bigvee_{j \in J} \mathcal{P}_j$, where $(\mathcal{P}_j)_{j \in J}$ denotes the family of all local quasiuniformities (resp. quasi-uniformities) contained in $\cap_{i \in I} Q_i$ (the family $(\mathcal{P}_j)_{j \in J}$ is not empty, because at least the indiscrete uniformity is presents in $(\mathcal{P}_j)_{j \in J}$).

The following results given us a characterization about the local quasi-uniformities $\inf_{i \in I}(Q_i)$ and $\sup_{i \in I}(Q_i)$.

Lemma 3.15

Let X be a non-empty set and $(Q_i)_{i \in I}$ be a family of local quasi-uniformity (resp. quasi-uniformity). Then:

- 1. $\{\bigcap_{i \in I_0} Q_i : Q_i \in Q_i, I_0 \text{ is finite}\}\$ is a base for $\bigvee_{i \in I} Q_i$.
- 2. (a) $\wedge_{i \in I} Q_i \subset \bigcap_{i \in I} Q_i$. (b) $\cap_{i \in I} Q_i$ is local quasi-uniformity (resp. quasi-uniformity) then $\wedge_{i \in I} Q_i = \bigcap_{i \in I} Q_i$ and $\mathcal{B} = \{ \bigcup_{i \in I} Q_i : Q_i \in Q_i \}$ is a base of $\wedge_{i \in I} Q_i$.

Proof:

- 1. It is easy to prove.
- 2 (a) It's obvious.

(b) It is enough to show that $\bigcap_{i \in I} Q_i \subset \bigwedge_{i \in I} Q_i$.

For each $i \in I$, we know that $\bigcap_{i \in I} Q_i \subset Q_i$.

Therefore by definition of least lower bound we have $\bigcap_{i \in I} Q_i \subset \bigwedge_{i \in I} Q_i$.

It is easy to prove that $B = \{ \bigcup_{i \in I} Q_i : Q_i \in Q_i \}$ is base of $\bigcap_{i \in I} Q_i$.

If $\bigwedge_{i \in I} Q_i = \bigcap_{i \in I} Q_i$, then we have a description of a base for $\bigwedge_{i \in I} Q_i$. But in general that doesn't happen as we can verify in the example 4.8.

Lemma 3.16

Let $\{Q_1, ..., Q_n\}$ be a finite family of quasi-uniformity. If the family

$$\mathcal{B} := \{ \mathbf{Q}_1 \circ \dots \circ \mathbf{Q}_n : \mathbf{Q}_i \in Q_i, \forall i = 2, \dots, n \}$$

is a base of one quasi-uniformity Q, then $Q = \bigwedge_{i=1}^{n} Q_i$.

Proof:

Evidently, for each *i* for i = 1, ..., n we have $Q \subset Q_i$, and $Q \subset \bigcap_{i=1}^n Q_i$. The definition of the greatest lower bound gives $Q \subset \bigwedge_{i=1}^n Q_i$. Let us show that $\bigwedge_{i=1}^n Q_i \subset Q$. Taking $U \in \bigwedge_{i=1}^n Q_i$, there is $V \in \bigwedge_{i \in I} Q_i$ such that $V \circ ... \circ V \subset U$.

Since for each *i*, we have $V \in Q_i$, therefore the set $V \circ ... \circ V$ belongs to \mathcal{B} , which is a base of Q. Consequently $U \in Q$.

Lemma 3.17

Let $\{Q_i\}_{i \in I}$ be a family of bilocal quasi-uniformities. Then $(\bigvee_{i \in I} Q_i)^\top = \bigvee_{i \in I} Q_i^\top$ and $(\bigwedge_{i \in I} Q_i)^\top = \bigwedge_{i \in I} Q_i^\top$. **Proof:**

We will proof that $(\wedge_{i\in I} Q_i)^{\top} = \wedge_{i\in I} Q_i^{\top}$. We observe that for every *i*, we have $\wedge_{i\in I} Q_i \subset Q_i$ then $(\wedge_{i\in I} Q_i)^{\top} \subset Q_i^{\top}$. If for every *i*, there is a local-quasiuniformity \mathcal{V} such that $\mathcal{V} \subset Q_i^{\top}$, then $\mathcal{V}^{\top} \subset Q_i$ but by definition of nfimum $\mathcal{V}^{\top} \subset \wedge_{i\in I} Q_i$, therefore $\mathcal{V} \subset (\wedge_{i\in I} Q_i)^{\top}$. The proof in the case of the supremum is similar. \blacklozenge

Lemma 3.18

Let X be a non-void set and \mathcal{P} , Q be local uniformities (resp. uniformities) on X, then $\mathcal{P} \lor Q$ and $\mathcal{P} \land Q$ are local uniformities (resp. uniformities) too.

Proof:

By lemma 3.15 it's easy to check that $\mathcal{P} \lor Q$ is local uniformity (resp. uniformity). Put $\mathcal{V} = \mathcal{P} \land Q$. Since \mathcal{P} and Q are a local uniformities (resp. uniformities) by 3.5 (resp. 3.3(4)) $\mathcal{P} = \mathcal{P}^{\top}$ and $Q = Q^{\top}$ then $\mathcal{V} = \mathcal{P}^{\top} \land Q^{\top}$, but by 3.17 we know that $\mathcal{P}^{\top} \land Q^{\top} = (\mathcal{P} \land Q)^{\top} = \mathcal{V}$. Then $\mathcal{V} = \mathcal{V}^{\top}$ hence \mathcal{V} is local

uniformity (resp. uniformity). ♦

Lemma 3.19

Let (X, Q) be a bilocal quasi-uniform space.

- 1. Put $Q^{\vee} = Q \vee Q^{\top}$.
 - (a) The family $\{\top (Q) \cap Q : Q \in Q\}$ is a local quasi-uniformity base for Q^{\vee} .
 - (b) Q^{\vee} is the coarsest local uniformity containing Q.
- 2. Put $Q_{\wedge} = Q \wedge Q^{\top}$.

(a) If $Q \cap Q^{\top}$ is a local uniformity then $Q_{\wedge} = Q \cap Q^{\top}$ and the family

$$\mathcal{B} = \{\top (Q) \cup Q : Q \in Q\}$$
 is base of Q_{\wedge}

(b) Q_{\wedge} is the finest local uniformity contained in Q.

Proof:

- 1. (a) It is a particular case of 3.15(a).
 - (b) By a) we have the family {Q ∩ ⊤ (Q) :Q ∈ Q} is a base for Q ∨ Q[⊤]. Therefore the all members of this family are symmetric, and we get that Q ∨ Q[⊤] is uniformity. The rest is clear.
- 2. (a) It is a particular case of 3.15 (b).
 - (b) Put $\mathcal{V} := Q \wedge Q^{\top}$. Clearly, $\mathcal{V} \subset Q$ and $\mathcal{V}^{\top} \subset Q$. Then $\mathcal{W} := \mathcal{V} \vee \mathcal{V}^{\top} \subset Q$, hence $\mathcal{V} \subset \mathcal{W}$. By the last point, \mathcal{W} is a local uniformity, hence $\mathcal{W} = \mathcal{W}^{\top} \subset Q^{\top}$. By the definition of \mathcal{V} , we get $\mathcal{W} \subset \mathcal{V}$, i.e. $\mathcal{V} = \mathcal{W}$ is a local uniformity. The rest is clear. \blacklozenge

The following corollary is a particular case of 3.19 and 3.16.

Corollary 3.20

Let (X, Q) be a quasi-uniform space.

1. Put $Q^{\vee} = Q \lor Q^{\top}$.

(a) The family $\{Q \cap \top (Q) : Q \in Q\}$ it is a quasi-uniformity base for Q^{\vee} .

(b) Then Q^{\vee} is a uniformity and it is the coarsest uniformity containing Q.

- 2. Put $Q_{\wedge} = Q \wedge Q^{\top}$.
 - (a) If the family $\mathcal{B} := \{\top (Q) \circ Q : Q \in Q\}$ or $\mathcal{B} := \{Q \circ \top (Q) : Q \in Q\}$ is a uniformity base then, it is a base for the uniformity Q_{\wedge} .
 - (b) If $Q \cap Q^{\top}$ is a quasi-uniformity then $Q_{\wedge} = Q \cap Q^{\top}$ and the family $\mathcal{B} = \{Q \cup \top (Q) : Q \in Q\}$ is base of Q_{\wedge}
 - $\mathcal{D} = \{ \mathcal{Q} \cup \uparrow (\mathcal{Q}) : \mathcal{Q} \in \mathcal{Q} \} \text{ is base of } \mathcal{Q}_{\wedge}$

(c) Then Q_{\wedge} is a uniformity and it is the finest uniformity contained in Q.

Remark 3.21

The families $\{\top (Q) \circ Q : Q \in Q\}$, $\{Q \circ \top (Q) : Q \in Q\}$ are always filter bases, and each element of this family is symmetric and containing the diagonal, but can't be a quasi-uniformity basis.

4. Topologies defined in uniform type structures

We begin this chapter with the next result:

Proposition 4.1.

Let X be a non empty set and Q be a filter on $X \times X$, then the family

 $\tau_{O} = \{A \subset X : \forall a \in A, \exists Q \in Q \text{ such that } Q[a] \subset A\}$

is a topology on X, which will be called the topology induced by Q. **Proof:**

It's easy to see that \emptyset , $X \in \tau_Q$. Let $\{A_i\}_{i \in I}$ a family of elements of τ_Q , and let us see that $\bigcup_{i \in I} A_i \in \tau_Q$. Fix $x \in \bigcup_{i \in I} A_i$, then there is a i_0 such that $x \in A_{i_0}$. By definition of τ_Q , there is a $Q \in Q$ such that $Q[x] \subset A_{i_0}$, thus $Q[x] \subset \bigcup_{i \in I} A_i$.

Let now $A_1, A_2 \in \tau_Q$ we need to show that $A_1 \cap A_2 \in \tau_Q$; take $x \in A_1 \cap A_2$, then there are $Q_1, Q_2 \in Q$ such that $Q_1[x] \subset A_1$ and $Q_2[x] \subset A_2$, since $Q_1 \cap Q_2 \in Q$ we get $(Q_1 \cap Q_2)[x] \subset Q_1[x] \cap Q_2[x] \subset A_1 \cap A_2$.

In general if Q is a filter on $X \times X$, it may happen that for a given $Q \in Q$ and $x \in X$ the set Q[x] is not a τ_Q -neighbourhood of x.

Example 4.2

Let $X = \{1, 2, 3\}$ and $Q = \{(1, 1), (2, 2), (3, 3), (2, 3), (3, 1)\}$ and we consider the filter $Q := \mathbb{F}(\{Q\})$.

It is easy to see that $\tau_Q = \{\{\emptyset\}, \{1\}, \{1,3\}, \{1,2,3\}\}$, but $Q[2] \notin \mathcal{N}_{\tau_Q}(2)$.

From the next proposition we will derive that the phenomenon from the above example cannot happen when Q is a local quasi-uniformity (see corollary 4.4)

Proposition 4.3

Let Q be a local quasi-uniformity, A be a subset of X and $\widetilde{A} = \{x \in A, \exists Q \in Q : Q[x] \subset A\}$. Then \widetilde{A} is the interior of A for a topology τ_Q . **Proof:**

First we are going to prove that $A \in \tau_Q$. Take $x \in A$. There is a $Q \in Q$ such that $Q[x] \subset A$. Since Q is a local quasi-uniformity, there is a $P \in Q$ such that $P \circ P[x] \subset Q[x]$.

Let us see that $P[x] \subset A$. It is enough to prove that $P[y] \subset A$, for every $y \in P[x]$. Let $z \in P[y]$ then $(y, z) \in P$, since $y \in P[x]$ therefore $(x, y) \in P$ then $(x, z) \in P \circ P$, but

$$z \in P \circ P \subset Q[x]$$
, hence $P[y] \subset Q[x] \subset A$.

Since \tilde{A} is an open set such that $\tilde{A} \subset A$, we know that $\tilde{A} \subset int(A)$.

Now, we want to prove that $int(A) \subset \widetilde{A}$. Let $a \in int(A)$ then there is a Q such that $Q[a] \subset int(A) \subset A$ then $int(A) \subset \widetilde{A}$, hence $\widetilde{A} = int(A)$.

Corollary 4.4

Let (X, Q) be a local quasi-uniform space. Then

 $\mathcal{N}_{\tau_{\alpha}}(x) = \{ \mathbb{Q}[x], \ \mathbb{Q} \in Q \}, \ \forall x \in X .$

Proof:

Fix $x \in X$, $Q \in Q$ and let us see that $Q[x] \in \mathcal{N}_{\tau_Q}(x)$. In fact, by the proposition 4.3 $\widetilde{Q}[x] \in \tau_Q$ and $\widetilde{Q}[x] \subseteq Q[x]$. Evidently $x \in \widetilde{Q}[x]$. Consequently $Q[x] \in \mathcal{N}_{\tau_Q}(x)$. Therefore we proved that $\{Q[x], Q \in Q\} \subset \mathcal{N}_{\tau_Q}(x)$, $\forall x \in X$.

Let us show now that $\{Q[x], Q \in Q\}$ is a base of $\mathcal{N}_{\tau_0}(x) \quad \forall x \in X$.

Take $x \in X$ and $E \in \mathcal{N}_{\tau_Q}(x)$, we need to find $Q \in Q$ such that $Q[x] \subset E$. Since $E \in \mathcal{N}_{\tau_Q}(x)$ there is a τ_Q -open G such that $x \in G \subset E$ then by the definition of τ_Q there is a $Q \in Q$ such that $Q[x] \subset G$. Consequently $Q[x] \subset G \subset E$.

It remains to show that $\mathcal{N}_{\tau_Q}(x) \subset \{Q[x], Q \in Q\}, \forall x \in X \text{ Take } x \in X \text{ and} \\ E \in \mathcal{N}_{\tau_Q}(x) \text{, we need to find } P \in Q \text{ such that } E = P[x] \text{. Since } \{Q[x], Q \in Q\} \text{ is a} \\ \text{base of } \mathcal{N}_{\tau_Q}(x) \text{ there is } Q \in Q \text{ such that } Q[x] \subset E \end{cases}$

Write $P := Q \cup (E \times E)$, since Q is a filter, $P \in Q$ it is clear that $P[x] \subset E$.

We can see in Murdeshwar-Naimpally (1966), (pg. 11) that the family $\mathcal{N}_{\tau_Q}(x) = \{Q[x], Q \in Q\}$ satisfies the Hausdorff conditions, then we can say that there is only one topology τ such that for each $x \in X$, the family of all neighbours at x is $\mathcal{N}_{\tau_Q}(x) = \{Q[x], Q \in Q\}$. It's easy to prove the same result for the local quasi- uniform spaces.

Examples 4.5.

The quasi-uniformity bases of the example 3.9 induce different topologies, like this:

✓ The usual uniformity \mathcal{E} on \mathbb{R} induces the usual (or Euclidean) topology \mathbf{e} on \mathbb{R} ; clearly, for a given $x \in X$ the family $\{U_{\mathcal{E}}[x]: \varepsilon > 0\} = \{]x - \varepsilon, x + \varepsilon [, \varepsilon > 0\}$ is a base of $\mathcal{N}_{\varepsilon}(x)$.

✓ The quasi-uniformity base **S** on **R** (example b)) induces the Sorgenfrey topology σ ; for a given $x \in X$ the family $\{Q_{\mathcal{E}}[x]:\varepsilon>0\} = \{[x, x + \varepsilon[, \varepsilon > 0\} \text{ is a base of } \mathcal{N}_{\sigma}(x) .$

Lemma 4.6

Let $(Q_i)_{i \in I}$ be a non-empty family of local quasi-uniformities on X.

- a) $\tau_{\bigvee_{i\in I}Q_i} = \bigvee_{i\in I} \tau_{Q_i}.$
- b) $\tau_{\bigcap_{i\in I}}Q_i \subset \bigcap_{i\in I}\tau_{Q_i}$.
- c) $\tau_{\wedge_{i\in I}Q_i} \subset \wedge_{i\in I}\tau_{Q_i}$.
- d) If $\wedge_{i \in I} Q_i = \bigcap_{i \in I} Q_i$, then $\tau_{Q_{\wedge}} = \wedge_{i \in I} \tau_{Q_i}$.
- e) If $I = \{1, ..., n\}$ the family $\mathcal{B} := \{Q_1 \circ ... \circ Q_n : Q_i \in Q_i\}$ is a base of some local quasi-uniformity Q then $\tau_Q = \tau_{A_{i=1}^n Q_i}$.

Proof:

a) and b) are easy to check.

- c) Follows from b) because $\wedge_{i \in I} Q_i \subset \bigcap_{i \in I} Q_i$.
- d) Follows from *b*).

e) Evidently, for each $i \in I$ we have $Q \subset Q_i$, and $Q \subset \bigcap_{i=1}^n Q_i$. By the definition of the greatest lower bound we have $Q \subset \bigwedge_{i=1}^n Q_i$, hence $\tau_Q \subset \tau_{\bigwedge_{i=1}^n Q_i}$.

Let us show that $\tau_Q \supset \tau_{\bigwedge_{i=1}^n Q_i}$. Take $G \in \tau_{\bigwedge_{i=1}^n Q_i}$ and $x \in G$, there is a U such that $U[x] \subset G$. For each $U \in \bigwedge_{i=1}^n Q_i$ we have $V \in \bigwedge_{i=1}^n Q_i$, such that $V \circ \dots \circ V[x] \subset U[x]$.

Since for each i = 1, ..., n, $V \in Q_i$, the set $V \circ ... \circ V$ belongs to \mathcal{B} , which is a base of Q. Then there is an entourage $V \circ ... \circ V$ such that each $x \in X$ we have $V \circ ... \circ V[x] \subset U[x] \subset G$, consequently $G \in \tau_Q$.

Remark 4.7

- 1. If Q is a quasi-uniformity, the 4.6(e) is a particular case of 3.16.
- 2. If (X, Q^{\top}) is local quasi-uniform then Q is weakly locally symmetric at $x \in X$ if and only if $\mathcal{N}_{\tau_Q}(x) \subset \mathcal{N}_{\tau_{Q^{\top}}}(x)$ (it's direct consequence of 3.12).

With the following example we can see that in general the inclusions of the 3.15(b) and 4.6(c) can be strict.

Example 4.8

Let X be an infinite set, and τ be T_2 topology in X such that any τ -continuous function $f: X \to [0,1]$ is constant and $Q := Q^{Per}(\tau)$ (see 3.5). Then:

a)
$$\tau_{O_1} = \{\emptyset, X\}$$

To prove this, suppose that $\tau_{Q_{\wedge}} \neq \{\emptyset, X\}$. Hence $\tau_{Q_{\wedge}}$ is a completely regular topology, which is not indiscrete. This implies that there is a non-constant $\tau_{Q_{\wedge}}$ -continuous $f: X \to [0,1]$. Since $\tau_{Q_{\wedge}} \subset \tau$ then $f: X \to [0,1]$ is τ -continuous as well, but this contradicts our choice of τ . Consequently, $\tau_{Q_{\wedge}}$ is the indiscrete topology.

b) $\tau_{Q_{\wedge}} \neq \tau_{Q} \cap \tau_{Q^{\top}}$.

Follows from the first statements because $\tau_O \cap \tau_{O^{\top}}$ is a T_1 -topology.

c) $Q_{\wedge} \neq Q \cap Q^{\top}$. It is a immediate consequence of b).

A topological space (X, τ) is called local quasi-uniformizable, (resp. quasiuniformizable, local uniformizable, uniformizable) if there is a local quasiuniformity (resp. quasi-uniformity, local uniformity, uniformity) Q such that the topology induced by Q is τ , i.e. $\tau_Q = \tau$. When this uniform type structure Q is unique we say that (X, τ) is uniquely local quasi-uniformizable, (resp. quasiuniformizable, local uniformizable, uniformizable).

In this setting, there are two classic results that we have to mention. The first is due to Weil, and it shows that a "topological space is uniformizable if and only if it is completely regular".

The second theorem assures that any "topological space is quasi-uniformizable" and it was proved by Krishnan(1955). Later Császér(1960), showed this result, but subsequently Pervin gave a more direct and simpler proof. Pervin proved that for any topological space (X, τ) , the topology generated by the quasi-uniformity

 $Q^{Per}(\tau)$ (see 3.5) is τ .

Although the local quasi-uniformity formally has weaker properties than the quasiuniformity, however to construct the local quasi-uniformity compatible with a given topology seems not to be easier, than to build a quasi-uniformity with the same property.

Referências bibliográficas

- Clifford A.H. and Preston G. B.(1961). *The algebraic theory of semigroups*. Mathematical Surveys I, 7, American Mathematical Society. Rhode Island .
- Császár, A.(1960). Fondements de la topologie génerale., Gauthier-Villars. Paris.
- Dungundji, J.(1967). Topology. Ally and Bacon. Boston.
- Fletcher, P.; Lindgren, W.(1974). Locally quasi-uniform spaces with countable bases. Duke Math. J., 41, 231-340.
- Fletcher, P.; Lindgren, W.(1982). Quasi-uniform spaces, Lecture Notes in Pure and Applied Mathematics. 77, Marcel Dekker, Inc.. New York.
- Krishnan, V.S.(1955). A note on semiuniform spaces, J. Madras, Univ.Sect. B, 25, 123-124.
- Kelley, J.L (1975). General topology. Van Nostrand. Princeton.
- Künzi, H.(1993). Quasi-Uniform spaces-eleven years later. Topology Proceedings, 18, 143– 171.
- Künzi, H.(2001). Nonsymmetric Distances and Their Associated Topologies: About the Origins of Basic Ideas in the Area of Asymetric Topology. Handbook of the history of general topology, 3, 853-968. Hist. Topol. 3, Kluwer Acad. Publ. Dordrecht.
- Murdeshwar, M.G., Naimpally, S.A.(1966). Quasi-Uniform Topological Spaces. Noordhoff.
- Nacbin, L.(1948 a). Sur les espaces topologiques ordonnés. C.R.Acad. Sci.Paris, 226, 381-382.

Nacbin, L.(1948 b). Sur les espaces uniformes ordonnés. C.R.Acad. Sci.Paris, 226, 774-775

Nacbin, L.(1965). Topology and Order. D. van Nostrand. Princeton.

- Pervin, W.J. (1963). Quasi-uniformization of topological spaces. Math. Ann., 150, 316-317.
- Picado, J. (1998) Weil Nearness Spaces, Portugaliae Mathematica, 55,(2) 233-254.
- Williams, J.(1972). *Loccally Uniform Spaces*. Transactions of the American Mathematical Society, 168.
- Weil, A. (1937). Sur les espaces à structure uniform et sur la topologie générale., Gauthier-Villars. Paris.