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Abstract. In a non-empty set X  a filter Q on X X×  consisting of 

reflexive relations, which satisfies: 

Q P such that P P[ ] Q[ ]x X Q Q x x∀ ∈ ∀ ∈ , ∃ ∈ ⊂o  

is called local quasi-uniformity. If we require the symmetry condition then 

we obtain a local uniformity. These concepts were introduced by Fletcher-

Lindegren(1974) and Williams(1972) respectively. 

We will discuss the possibility of extending the known results about (quasi)-

uniform spaces to local (quasi)-uniform spaces 
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1. Introduction 

If X  is a non-empty set a filter Q  on X X×  of reflexive relations, which satisfies 

the divivisiblity condition : 

( )PQ P such that P Q Q Q∀ ∈ , ∃ ∈ ⊂o⊤  

is called uniformity in X . 

The notion of uniform space was introduced by Weil (1937) as a generalization of 

the concept of a metric space (see 3.1). 

Removing the symmetry Nachbin (1948a), Nachbin (1948b), and Nachbin (1965) 

obtained the concept of semi-uniform structures. Later, the term quasi-uniformity 

suggested by Császár (1960) was commonly accepted. 

Williams (1972) and Fletcher-Lindgren (1974) introduced the notion of local 

uniformity and local quasi-uniformity, respectively, localizing the divisibility 

condition:  

 Q  P such that P P[ ] Q[ ]x X Q Q x x∀ ∈ ∀ ∈ ∃ ∈ ⊂o . 

If Q  is a quasi-uniformity, it is known that the conjugate filter Q⊤  is always a 

quasi-uniformity. In this paper we give an example of a local quasi-uniformity Q  

such that conjugate filter Q
⊤

 is not a local quasi-uniformity and other example of a 

local quasi-uniformity which is not quasi-uniformity and the conjugate filter Q
⊤

 is 

a local quasi-uniformity. In this case we say that Q  is bilocal quasi-uniformity. 

The set all local quasi-uniformities in X , LQ ( )X , with respect to the set-theoretic 

inclusion ⊂  is a partially ordered set, with one smallest element, the indiscrete 

uniformity { }X X×  and one biggest element, the discrete uniformity 

{ ( ) }R P X X R∈ × | ⊃ ∆ , hence (LQ ( )X , ⊂ ) is a complete lattice.  

For a given family of local quasi-uniformities ( )i IQi ∈ , we study the local quasi-

uniformities infi I iQ∈  and supi I iQ∈ . In particular if Q  is bilocal quasi-uniformity, 

we show that { }inf ,Q Q
⊤

 and { }sup ,Q Q
⊤

 are local uniformities.  
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We presented also, some topological aspects of local quasi-uniform spaces. 

2. Introductory concepts 

In all this paper X  be a non-empty set.  

For X  we define filter, Å, as a non empty set family of subsets of X  such that:  

� ∅ ∉Å.  

� If A B, ∈Å A B⇒ ∩ ∈Å. 

� If A∈  Å and A B B⊂ ⇒ ∈Å. 

We define filter base, Á as a non empty set family of subsets of X  provided:  

� ∅ ∉Á. 

� If A B, ∈Á C⇒ ∃ ∈Á such thatC A B⊂ ∩ . 

We can observe that, the whole filter is filter base and a filter base generates the 

filter  

( ) { such that }.F A X B B A= ⊂ : ∃ ∈ ⊂Á Á  

 

Remark 2.1 

1. Let ( )X τ,  be a topological space, and ( )xτN  the family of all 

neighbourhoods of Xx∈  , then ( )( )
x X

x
∈τN has the following properties: 

� ( )xτN  is a filter, .x X∀ ∈  

� , ( )x X E x∈ ∈ τN  implies ( )x x∈ τN . 

� , ( ) implies that ( ) such that ,  ( ).x X E x F x y F E y∈ ∈ ∃ ∈ ∀ ∈ ∈τ τ τN N N

  

2. The following converse of (1) is true: 

 If X  is a non-empty set and with every x X∈  associated a family ( )xN  

of subsets of X , with the following properties: 

� ( )xN  is a filter, .x X∀ ∈  

� , ( )x X E x∈ ∈ N  implies ( )x x∈ N . 

� ( ), ( ) implies that  such that ,  ( ).xx X E x F y F E y∈ ∈ ∃ ∈ ∀ ∈ ∈N N N

then there is a unique topology X∈τ , such that ( ) ( )x xτ =N N , for 

each x X∈ . 
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Let ( )X X×P  be the collection of all subsets of ×X X . Any members of 

( )X X×P  is called a (binary) relation on X .  

 

We denote by ⊤  the bijection: 

⊤ : × → ×X X X X  

( ) ( ).x y y x, = ,⊤  

 

For a Q ( )X X∈ ×P  we write { }( , ):( , ) Q(Q) x y x y ∈= ⊤⊤  and call (Q)⊤  the 

conjugate of Q .  

Usually in the literature the notation 
1

Q
−

 is used instead of (Q)⊤ . The relation 

( )Q⊤  is called also converse relation to Q  (see Clifford-Preston (1961), p.14). 

 

For P, Q ⊂ ×X X  we write  

P Q {( ) ( ) Q ( ) P}x y X X z X x z z y:= , ∈ × : ∃ ∈ , , ∈ , , ∈o  

 

The relation P Qo  is called the composition of   P  and Q . 

In ( )X X×P  the composition o  can be viewed as a binary operation. 
 

We write {( )  with }X x x x X∆ = ∆ = , ∈ , and call ∆  the diagonal set. 

A relation Q  is called: 

� reflexive iff Q∆ ⊂ .  

� Symmetric iff (Q) Q=⊤ .  

� anti-symmetric  iff Q (Q)∩ = ∆⊤ .  

� Transitive iff Q Q Q⊂o .  

 

For a relation Q ( )X X∈ ×P , and an element ∈x X , we define the (vertical 

cross-)sections of Q  at x  as follows: 

Q[ ] { ( ) Q}:= ∈ : , ∈x y X x y  

 

and the (vertical cross-)sections at ⊂A X , by the equality: 
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Q[ ] Q[ ]:= .
∈
UA x
x A

 

3. Uniform type structure 

Let X  be a non-empty set and Q  be a filter on ×X X  consisting of reflexive 

relations ( Q Q )∆ ⊂ , ∀ ∈Q , we say that Q  is a: 

Local Quasi-uniformity if  

, Q  P such that P P [ ] Q[ ]x X Q Q x x∀ ∈ ∀ ∈ ∃ ∈ ⊂ .o  

Local Uniformity if  

 , Q ,  (Q)  and ,  P such that P P[ ] Q[ ]x X Q Q Q x x∀ ∈ ∀ ∈ ∈ ∃ ∈ ⊂ .o⊤  

Quasi-Uniformity if  

Q  P such that P P QQ Q∀ ∈ ∃ ∈ ⊂ .o  

Uniformity if  

( )PQ  P such that P QQ Q∀ ∈ ∃ ∈ ⊂ .o⊤  

 

The pair ( ),X Q  is called a local quasi-uniform space (resp. local uniform space, 

quasi-uniform space, uniform space) when Q  is a local quasi-uniformity (resp. 

local uniformity, quasi-uniformity, uniformity) and the members of Q  will be 

called entourages1
2
.  

 

Example 3.1 

Let X  be a non empty set. We say that a mapping : [0 [X Xρ × → , +∞  is a 

pseudo-quasi-metric if it satisfies: 

� ( ) 0ρ , = , ∀ ∈x x x X .  

� ( ) ( ) ( ), , ,x y x z z y x y z Xρ ρ ρ, ≤ , + , ∀ ∈ .  

The pair ( )ρ,X  will be called pseudo-quasi-metric space. 

 

Consider in X X×  the family  

( ){Q  with 0}ρ ρ ε ε= >Q  with Q ( ) {( ) : ( ) })x y X X x y= , ∈ × , <ρ ε ρ ε . 

                                                           
1

  

2Some authors use the term "vicinity" instead of entourage (see Picado (1998)). 
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It’s easy to see that:  

� Qρ is a filter base. 

� ( ) 0ρ , = , ∀ ∈x x x X  is equivalent to Q ( )ρ ε∆ ⊂ , 0ε∀ > . 

� ( ) ( ) ( ), , ,x y x z z y x y z Xρ ρ ρ, ≤ , + , ∀ ∈  implies that:  

0 0ε δ∀ > , ∃ > ,  such that Q ( ) Q ( ) Q ( )ρ ρ ρδ δ ε⊂o . 

For a pseudo-quasi-metric, ρ , ( )QρÅ  is a quasi.-uniformity. 

 

In following remark, we are giving equivalent characterizations of local 

uniformities and uniformities. 

 

Remark 3.2 

Let X  be a non-empty and, Q  be a filter on ×X X , consisting of reflexive 

relations.  

1. The following statements are equivalent. 

� Q  is a local uniformity.  

� Q∀ ∈Q  (Q) ∈Q⊤  and ( )P, Q P P[ ] Q[ ]x Q Q x x∀ ∀ ∈ ∃ ∈ : ⊂ .o⊤   

2. The following statements are equivalent  

� Q is a uniformity.  

� Q symmetric entourage such that Q∀ ∈ ∃ ⊂oQ S S S .  

� Q∀ ∈Q  (Q) ∈Q⊤  and Q  P P P Q∀ ∈ ∃ ∈ : ⊂ .oQ Q   

 

The next remark gives some properties of quasi-uniform space. 

Remark 3.3  

If ( ),X Q  is a quasi-uniform space then:  

1. ( , )X Q  is a local quasi-uniform space.  

2.  The filter { (Q)  such that Q }Q Q= ∈⊤
⊤  is quasi-uniformity. It is called 

the conjugate quasi-uniformity of Q .  

3. Q  is an uniformity if and only if .Q Q= ⊤
  

 

 

Remark 3.4 

If ( )X Q,  is a local quasi-uniform space then:  

1. The filter Q
⊤

 may not be a local quasi-uniformity, (see example 3.7). 

2. Q
⊤

 may be a  local quasi-uniformity, but Q  may not be a quasi-
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uniformity (see example 3.8). 

  

We say that Q  is a bilocal quasi-uniformity if Q  is a local quasi-uniformity 

which Q
⊤

 is a local quasi-uniformity too, and we that the pair ( ),X Q   is a 

bilocal quasi-uniform space.  

 

 

Remark 3.5 

If Q  is a bilocal quasi-uniformities, then Q  is a local uniformity if and only if 

=Q Q
⊤

.  

 

We say that a family B on ×X X  is a: 

 

Local quasi-uniform base if it satisfies the following conditions:  

 

1 )b
′

  B  is a filter basis.  

 

2 )b
′

  , BB∆ ⊂ ∀ ∈B .  

 

3 )b
′

 ∀ ∈x X , B C∀ ∈ ∃ ∈B B  such that C C[ ] B[ ]x x⊂o .  

Local uniform base if it satisfies the following conditions:  

 

1 )b
′

  B  is a filter basis.  

 

2 )b
′

  , BB∆ ⊂ ∀ ∈B .  

 

3 )b
′

 B C∀ ∈ ∃ ∈B B  such that ( )C B⊂⊤  

 

4 )b
′

 ∀ ∈x X , B C∀ ∈ ∃ ∈B B  such that C C[ ] B[ ]x x⊂o .  

 

 

 

Quasi-uniform base if it satisfies the following conditions:  

)
1
b B  is a filter basis.  

2 )b B B∆ ⊂ ∀ ∈B .  
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3 )b B C∀ ∈ ∃ ∈B B  such that C C B⊂o .  

Uniform base if it satisfies the following conditions:  

1 )b   B  is a filter basis.  

2 )b   , BB∆ ⊂ ∀ ∈B .  

3 )b  B C∀ ∈ ∃ ∈B B  such that ( )C B⊂⊤  

4 )b  B C∀ ∈ ∃ ∈B B  such that C C B⊂o .  

 

 

If B  is a (local) quasi-uniform base, then Å( B )3 is a unique (local) quasi-

uniformity for which B  is base. 

  

A family ( )X X⊂ ×S P  is a subbase of a (local) quasi-uniformty, if the family 

B  of finite intersections of members of S  is a (local) quasi-uniform base. 

 

Example 3.6 

1. For a set X  and its subset G  we write: 

( ) (( ) )GS G G X G X X X= × ∪ − × ⊂ × . 

It is easy to observe that GS  is a reflexive relation with the property: 

G G GS S S=o . 

 

Let ( )τ,X  be a topological space. { }GS G= : ∈τS  is a quasi-uniform subbase 

(this is easy to see). The quasi-uniformity generated by this family is called by 

Pervin quasi-uniformity associated with the topology τ , and it is denoted by 

( )
Per

Q τ  (see Murdeshwar- Naimpally(1966)). 

 

 

                                                           

3 Å(B ) is the filter generated by the filter base B . 
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Example 3.7 

Write { }0 1{ }X n= ∪ , with n∈Í and 

1 1 1 1
Q {( 0) : } {( ) : } {(1 ) : }

1
n i n i n i n

i i i i
= ∆ ∪ , ≥ ∪ , ≥ ∪ , ≥

+
 

    and {Qno
Q n= : ∈Í}.   

It’s easy to see that:  

� 1Q Q+ ⊂n n , for each ∈n Í, therefore 
o

Q  is a filter base on ×X X . 

� nQ∆ ⊂  for every ∈n Í. 

 

• Let us see that 
o

Q  isn’t a quasi-uniformity base.  

Fix 1Q
o

Q∈  and the pair 1 1
2

( )
n n′ ′+ , . 

We have  

( )1 1 1 1
Q and Q , '

12 1
n n n

n nn n
′ ′, ∈ , ∈ ∀ ∈′ ′+′ ′+ +

 
 
 

Í. 

Then for every n′ ∈Í, 1 1( ) Q Q
2 n nn n ′ ′, ∈′ ′+ o , however 1

1 1( ) Q
2n n

, ∈/′ ′+ . 

• Let us see that 
o

Q  is a local quasi-uniformity base. 

Fix n∈Í, we have  

Q [0]n = Q Q [0] {0}n n =o  n∀ ∈Í; 

1Q [1] = { }1 1
10, 1  
2

Q [1] Q [1] , ,...=o ; 

 Q [1]n = 1 1Q Q [1] {1 }
1n n n n

= , , , ...+o ,  1n∀ > . 

Fix n∈Í and 1k >  then: 

1 1 1 1

1 1 1 1
Q Q [ ] { } hence Q Q [ ] Q [ ],k k k k n n

k k k k
+ + + += ⊂ ∀ ∈o o Í. 

• Now let us see that Q
⊤

 isn’t a local quasi-uniformity base.  

Observe that: 
1 1 1 1

(Q {(0 )} {( )} {( 1)}
1

)n i n i n i n
i i i i

≥ ≥ ≥= ∆ ∪ , ∪ , ∪ ,
+

⊤ . 

Then 2(Q )[0]⊤
1 1{0 }

32
= , , , ...  but for every m∈ Í, we have:  

1 1
0  1Q and Qm mm m

   , ,   
   

∈ ∈ , thus 
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1 (Q ) (Q )[0],m m m∈ ∀ ∈o⊤ ⊤ Í, but 21 (Q )[0]∈/⊤ . 

 

Next we present the example mentioned in remark 3.4 (2). 

 

Example 3.8 

Write { }0 1{ }X n= ∪ , with n∈Í, and  

1 1 1Q {(0 ) : } {( ) : }
1n i ii

i n i n= ∆ ∪ , ∪ ,+≥ ≥  

and {Qno
Q n= ∈: Í}   

Let us see that 
o

Q  isn’t a quasi-uniformity base. 

It’s easy to see that:  

� 1Q Qn n+ ⊂  for every n∈Í,  therefore Q  is a filter base on X X× . 

� nQ∆ ⊂  for every n∈Í. 

 

• Let us see that Q  isn’t a quasi-uniformity base.  

Fix 1Q
o

Q∈  and 'n ∈Í. We have: 

1 1 1 1

2 1 1
Q and Qn nn n n n

′ ′
   , ,   ′ ′ ′ ′+ + +   

∈ ∈ . 

Then for every n′ ∈Í, we have: 

( )1 1
2

Q Qn nn n ′ ′,′ ′+ ∈ o , but ( ) 1
1 1

2
Q

n n
,′ ′+ ∉ . 

 

• Now let us see that Q  is a local quasi-uniformity base.  

For each n∈Í, we have: 

Q [0]n = 1 1Q Q [0] {0 }
1n n n n

= , , ...+o  

Now let 1k ≥ , and 1n ≥ . We have: 

1 1 1 1
Q Q [ ] } hence Q Q [ ] Q [ ].{k k k k n

k k k k
⊂=o o  

• Let us see that Q
⊤

 is also a local quasi-uniformity base.  

 Notice that  
1 1 1

(Q ) { } {( 0) : } {( ) : }
1

n
i i i

i n i n= ∆ ∪ , ∪ , .
+

≥ ≥⊤  
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Since Q  is a filter base of reflexive relations, then Q
⊤

 is a filter base of reflexive 

relations, too.  

For any n∈Í, we know that: 

(Q )[0]n⊤ = (Q ) (Q )[0] {0}n n =o⊤ ⊤ . 

Now fix ,n k ∈Í , we have: 

1 1 1 1

1 1 1 1
(Q ) (Q )[ ] } hence (Q ) (Q )[ ] (Q )[ ]{k k k k n

k k k k
+ + + + ⊂= .o o⊤ ⊤ ⊤ ⊤ ⊤  

In this example we introduce several an example of a uniform base and a quasi-

uniform base.  

 

Example 3.9 

a) Let X = R . For 0ε >  denote U {( )x y:= , ∈ε R ] [2
}y x ε ε− ,: − ∈ . The 

uniformity generated by the base {U : 0}>ε ε is called the usual uniformity of the 

real line R . 
 

b)  Let X = R . For 0ε >  denote Q {( )x yε := , ∈R 2
[0 [}y x ε: − ∈ , , then 

{Q : 0}>ε ε  is a quasi-uniform base. The quasi-uniformity S  in R  generated by 

this base is the quasi-uniformity induced by the Sorgenfrey topology. 

 

We say that a local quasi-uniformity Q  is: 

weakly locally symmetric at x X∈  if for every Q Q∈  there is a symmetric 

entourage S Q∈  such that [ ] Q[ ]S x x⊂ .   

weakly locally symmetric or point-symmetric if Q  is weakly locally symmetric 

at x , for every .x X∈  

small-set symmetric at x X∈ , if ( )X Q,  is a bilocal quasi-uniformity Q
⊤

 is 

weakly locally symmetric at .x X∈  

locally symmetric at x X∈  if for every Q Q∈  there is a symmetric S Q∈  such 

that [ ] Q[ ]S S x x⊂o .  

locally symmetric if Q  is locally symmetric at x , for every .x X∈   

 

The following example of Fletcher-Lindgren (1982) gives us a quasi-uniformity 
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locally symmetric Q  which isn’t uniformity.  

 

 

Example 3.10 

Let { }0 1{ }X n= ∪ , with n∈Í and  

{QnQ n= : ∈Í
1

}with Q {( 0)}n i n
i

≥= ∆ ∪ , . 

 

 

Remark 3.11 
1. We can find a quasi-uniform version of the last definition in Künzi (2001), but 

in that case we must assume that Q
⊤

 is a local quasi-uniformity as well. In 

quasi-uniform case this condition always holds. 

 

 

2. We can observe certain similarity between the notions of local uniformity and 

locally symmetric quasi-uniformity. However these concepts are different, 

because a local uniformity may not be divisible, and a quasi-uniformity locally 

symmetric may not contain the converse of any entourage.  

 

 

Proposition 3.12 

Let ( )X Q,  be a local quasi-uniform space. Q  is weakly locally symmetric if and 

only if for any x X∈  and Q Q∈  there is an entourage P Q∈  such 

that (P)[ ] Q[ ]x x⊂⊤ .  

 

Proof:  

Suppose that for each Q Q∈  there is an entourage 1P  such that 
1

(P )[ ] Q[ ]x x⊂⊤ . 

Put 1P=Q P∩  and we will consider the symmetric entourage P (P)S = ∪ ⊤ . Then 

[ ] (P)[ ] P[ ] Q[ ]S x x x x= ∪ ⊂⊤ . The reciprocal is immediate.♦ 

 

Proposition 3.13   

Let ( )X Q,  be a local quasi-uniform space. Q  is a locally symmetric if and only if 

for any x X∈  and for any Q Q∈  there is an entourage P Q∈  such 

that (P) P[ ] Q[ ]x x⊂o⊤ .  
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Proof:  

The first implication is obvious. If Q Q∈  and x X∈ , there are entourages 1P  and 

2P  such that 1 1(P ) P [ ] Q[ ]x x⊂o⊤  and 2 2P P Q[x][ ]x ⊂o . If 1 2P P P= ∩ , there is 

an entourage 1R  such that 1 1( ) [ ] [ ]R R x P x⊂ .o⊤  

If 1R R P P= ∩ ⊂ , and ( )S R R= ∪⊤ , let us see that [ ] Q[ ]S S x x⊂o .  

We have:  

i  ( ) ( )[ ] ( ) ( ) [ ] ( ) ( )[ ] ( ) [ ] Q[ ]R R x R R R x R P x P P x x⊂ ⊂ ⊂ ⊂o o o o o⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ;  

ii [ ] [ ] Q[ ]R R x P P x x⊂ ⊂o o ; 

iii ( ) [ ] [ ] [ ] Q[ ]R R x P x P P x x⊂ ⊂ ⊂o o⊤ ; 

iv. ( )[ ] ( ) [ ] ( )[ ] [ ] Q[ ]R R x R R R x R P x P P x x⊂ ⊂ ⊂ ⊂o o o o o⊤ ⊤ ; 

Consequently:  

( ) ( )( ) ( ) [ ]R R R R x∪ ∪ =o⊤ ⊤  

( ) ( ) ( ) ( )( ) ( ) [ ] ( ) [ ] ( ) [ ] [ ] [ ]R R x R R x R R x R R x Q x= ∪ ∪ ∪ ⊂ .♦o o o o⊤ ⊤ ⊤ ⊤  

 

Let X  be a set and LQ ( )X  be the set of all local quasi-uniformities in X .  Then:  

— LQ ( )X  with respect to the set-theoretic inclusion ⊂  is a partially ordered set.  

— In (LQ ( )X , ⊂ ) the indiscrete uniformity { }X X×  is the smallest element 

and the discrete uniformity { ( ) }R P X X R∈ × | ⊃ ∆  is the biggest element.  

—   (LQ ( )X , ⊂ ) is a complete lattice.  

 

Let ( )i i IQ ∈  be a non-empty family of local quasi-uniformities (resp. family of 

quasi-uniformity) on X .  We denote:  

1. inf ( )i I i i I iQ Q∈ ∈= ∧  is the finest local quasi-uniformity (resp. family of 

quasi-uniformity) contained iQ ,  i I∀ ∈ . 

2. sup ( )i I i i I iQ Q∈ ∈= ∨  is the coarsest local quasi-uniformity (resp. family of 

quasi-uniformity) containing iQ ,  i I∀ ∈  . 

Remark 3.14   

Let ( )i i IQ ∈  be a non-empty family of local quasi-uniformity (resp. family of quasi-

uniformity) on X . Then 

1. i I i iQ Q∈∧ ⊂  and if there is a local quasi-uniformity (resp. a quasi-

uniformity) Q  such that for any i  we have iQ Q⊂ ,  then i I iQ Q∈⊂ ∧ .   
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2. i i I iQ Q∈⊂ ∨  and if there is a local quasi-uniformities (resp. family of quasi-

uniformities) Q  such that iQ Q i I⊂ , ∀ ∈  then i I iQ Q∈∨ ⊂ .   

3. i I i j J jQ∈ ∈∧ := ∨ ,P  where ( )j j J∈P  denotes the family of all local quasi-

uniformities (resp. quasi-uniformities) contained in i I iQ∈∩  (the family 

( ) j Jj ∈P  is not empty, because at least the indiscrete uniformity is presents in 

( ) j Jj ∈P ).  

The following results given us a characterization about the local quasi-uniformities 

inf ( )i I iQ∈  and sup ( )i I iQ∈ . 

 

Lemma 3.15   

Let X  be a non-empty set and ( )i i IQ ∈  be a family of local quasi-uniformity (resp. 

quasi-uniformity ). Then:  

1. 
0 0{ Q Qi I i i iQ I∈∩ : ∈ ,  is finite}  is a base for i I iQ∈∨ .  

2. (a) i I i i I iQ Q∈ ∈∧ ⊂ ∩ . 

(b) i I iQ∈∩  is local quasi-uniformity (resp. quasi-uniformity) then 

i I i i I iQ Q∈ ∈∧ = ∩  and { Q Q }i I i i iQ∈= ∪ : ∈B  is a base of i I iQ∈∧ .  

Proof:  
1. It is easy to prove.  

2   (a) It’s obvious.  

(b) It is enough to show that  i I i i I iQ Q∈ ∈∧∩ ⊂ . 

For each i I∈ , we know that  i I i iQ Q∈∩ ⊂ . 

Therefore by definition of least lower bound we have i I i i I iQ Q∈ ∈∩ ⊂ ∧ . 

It is easy to prove that { Q Q }i I i i iB Q∈= ∪ : ∈  is base of i I iQ∈∩ . ♦ 

 

If i I i i I iQ Q∈ ∈∧ = ∩ , then we have a description of a base for i I iQ∈∧ . But in 

general that doesn’t happen as we can verify in the example 4.8.  

 

Lemma 3.16   

Let 1{ }nQ Q, ...,  be a finite family of quasi-uniformity. If the family  
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1{Q Q Q 2 }n i iQ i n:= ... ∈ , ∀ = , ....,:o oB  

is a base of one quasi-uniformity Q , then 1

n

i iQ Q== ∧ .  

 

Proof:  

Evidently, for each i  for 1i n= , ...,  we have iQ Q⊂ , and 
1

n

i
i

Q Q
=

⊂ I . The 

definition of the greatest lower bound gives 1

n

i iQ Q=⊂ ∧ . Let us show that 

1

n

i iQ Q=∧ ⊂ . Taking 1U
n

i iQ=∈ ∧ , there is i I iV Q∈∈ ∧  such that V V U... ⊂ .o o   

Since for each i , we have iV Q∈ , therefore the set V V...o o  belongs to B , which 

is a base of Q . Consequently U Q∈ .  ♦ 

 

Lemma 3.17   

Let { }i i IQ ∈  be a family of bilocal quasi-uniformities. Then ( )i I i i I iQ Q∈ ∈∨ = ∨⊤ ⊤
 

and ( ) i I ii I i QQ ∈∈ = ∧∧
⊤ ⊤

.  

Proof:  

We will proof that ( ) i I ii I i QQ ∈∈ = ∧∧
⊤ ⊤

. We observe that for every i , we have  

i I i iQ Q∈∧ ⊂  then ( )i I i iQ Q∈∧ ⊂
⊤ ⊤

. If for every i , there is a local-quasi-

uniformity V  such that iQ⊂ ⊤
V , then iQ⊂⊤V  but by definition of nfimum 

i I iQ∈⊂ ∧⊤
V , therefore ( )i I iQ∈⊂ ∧

⊤

V . The proof in the case of the supremum 

is similar. ♦  

 

Lemma 3.18   

Let X  be a non-void set and P , Q  be local uniformities (resp. uniformities) on 

X , then Q∨P  and Q∧P  are local uniformities (resp. uniformities) too.  

Proof:  

By lemma 3.15 it’s easy to check that Q∨P  is local uniformity (resp. uniformity).  

Put Q= ∧V P . Since P  and Q  are a local uniformities (resp. uniformities) by 

3.5  (resp. 3.3(4)) = ⊤
P P  and Q Q= ⊤

 then Q= ∧V
⊤ ⊤

P , but by  3.17 we 

know that ( )Q Q∧ = ∧ =V
⊤ ⊤ ⊤

P P . Then = ⊤
V V  hence V  is local 
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uniformity (resp. uniformity). ♦ 

 

 

 

Lemma 3.19  

Let ( )X Q,  be a bilocal quasi-uniform space. 

1. Put Q Q Q
∨ ∨= ⊤

.  

(a) The family { (Q) Q Q }Q∩ : ∈⊤  is a local quasi-uniformity base for Q
∨

.  

(b) Q∨
 is the coarsest local uniformity containing Q . 

2. Put Q Q Q∧ ∧= ⊤
.  

(a) If Q Q∩ ⊤
 is a local uniformity then Q Q Q∧ = ∩ ⊤

 and the family  

{ (Q) Q Q }Q= ∪ : ∈⊤B is base of Q∧ . 

(b) Q∧  is the finest local uniformity contained in Q.   
Proof:  

1. (a) It is a particular case of 3.15(a). 

(b) By )a  we have the family {Q (Q) Q }Q∩ : ∈⊤  is a base for Q Q∨ .⊤  

Therefore the all members of this family are symmetric, and we get that 

Q Q∨ ⊤
 is uniformity. The rest is clear.  

2. (a) It is  a particular case of 3.15 (b). 

(b) Put Q Q:= ∧ .⊤V  Clearly, Q⊂V  and Q⊂ .⊤
V  Then 

Q:= ∨ ⊂W V V
⊤

, hence ⊂V W . By the last point, W  is a local 

uniformity, hence Q= ⊂ .⊤ ⊤
W W  By the definition of ,V  we get 

⊂ ,W V  i.e. =V W  is a local uniformity. The rest is clear. ♦ 

 

The following corollary is a particular case of  3.19 and 3.16. 

 

Corollary 3.20 

Let ( )X Q,  be a quasi-uniform space. 

1. Put Q Q Q
∨ = ∨ ⊤

.  

(a) The family {Q (Q) Q }Q∩ : ∈⊤  it is a quasi-uniformity base for Q
∨

.  

(b) Then Q
∨

 is a uniformity and it is the coarsest uniformity containing Q.   
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2. Put Q Q Q∧ = ∧ ⊤
.  

(a) If the family { (Q) Q Q }Q:= : ∈o⊤B  or {Q (Q) Q }Q:= : ∈o ⊤B is a 

uniformity base then, it is a base for the uniformity Q∧ .  

(b) If Q Q∩ ⊤
 is a quasi-uniformity then Q Q Q∧ ∩= ⊤

 and the family  

{Q (Q) }Q Q= ∪ : ∈⊤B   is base of Q∧   

(c) Then Q∧  is a uniformity and it is the finest uniformity contained in Q.   
 

Remark 3.21   

The families { (Q) Q  Q }Q: ∈o⊤ , {Q (Q):  Q }Q∈o⊤  are always filter bases, 

and each element of this family is symmetric and containing the diagonal, but 

can’t be a quasi-uniformity basis.  

4. Topologies defined in uniform type structures  

We begin this chapter with the next result: 

 

Proposition  4.1.  

Let X  be a non empty set and Q  be a filter on X X× , then the family  

{ Q such that Q[ ] }Q A X a A Q a Aτ = ⊂ :∀ ∈ , ∃ ∈ ⊂  

is a topology on X , which will be called the topology induced byQ . 

Proof:  

It’s easy to see that  QX τ∅, ∈ .   Let { }i i IA ∈  a family of elements of Qτ , and let us 

see that i Q
i I

A τ
∈

∈U .  Fix i
i I

x A
∈

∈ U , then there is a 0i  such that 
0i

x A∈ . By 

definition of Qτ , there is a  Q Q∈  such that 
0

Q[ ] ix A⊂ , thus  Q[ ] i
i I

x A
∈

⊂ U .   

Let now 1A , 2A ∈  Qτ  we need to show that 1 2 QA A τ∩ ∈ ; take 1x A∈ ∩ 2A , then 

there are 1 2Q  Q Q, ∈  such that 1 1Q [ ]x A⊂  and 2 2Q [ ]x A⊂ , since 1 2Q Q Q∩ ∈  

we get 1 2 1 2 1 2(Q Q )[ ] Q [ ] Q [ ]x x x A A∩ ⊂ ∩ ⊂ ∩ .  ♦  
 

In general if Q  is a filter on X X× , it may happen that for a given  Q Q∈  and 

x X∈  the set Q[ ]x  is not a Qτ -neighbourhood of x .  
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Example  4.2 

Let { }1,2,3X =  and { }Q (1,1), (2, 2), (3,3), (2,3), (3,1)= and we consider the filter 

{ }( ): QQ = Å . 

It is easy to see that {{Q =τ «},{1},{1,3},{1, 2,3}} , but [2] (2).
Q

Q τ∉N  

 

From the next proposition we will derive that the phenomenon from the above 

example cannot happen when Q  is a local quasi-uniformity (see corollary 4.4) 

 

Proposition  4.3 

Let Q  be a local quasi-uniformity, A  be a subset of X  and 

% { ,  Q Q[ ] }A x A Q x A= ∈ ∃ ∈ : ⊂ .  Then %A  is the interior of A  for a topology Qτ .  

Proof:  

First we are going to prove that % QA∈τ  . Take %x A∈ . There is a Q Q∈  such that 

Q[ ]x A⊂ .  Since Q  is a local quasi-uniformity, there is a P Q∈  such that 

P P[ ] Q[ ]x x⊂o .  

Let us see that %P[ ]x A⊂ . It is enough to prove that P[ ]y A⊂ , for every P[ ]y x∈ .  

Let P[ ]z y∈  then ( ) Py z, ∈ , since P[ ]y x∈  therefore ( ) Px y, ∈  then 

( ) P Px z, ∈ o , but  

P P Q[ ] hence P[ ] Q[ ]z x y x A∈ ⊂ , ⊂ ⊂ .o  

Since %A  is an open set such that %A A⊂ , we know that % ( )A int A⊂ .  

Now, we want to prove that %( )int A A⊂ . Let ( )a int A∈  then there is a Q  such 

that Q[ ] ( )a int A A⊂ ⊂  then  %( )int A A⊂ , hence % ( )A int A= . ♦  

 

Corollary 4.4  

Let ( , )X Q  be a local quasi-uniform space. Then 

( ) {Q[ ]  Q },   
Q
x x Q x X= , ∈ ∀ ∈τN . 



Uniform type structures 

 167 

 

Proof:  

Fix ,  Qx X Q∈ ∈  and let us see that Q[ ] ( )
Q

x x∈ τN . In fact, by the proposition 4.3 

[ ]
Q
τxQ

~ ∈  and [ ] [ ]xQxQ
~ ⊆ . Evidently [ ]xQ

~
x ∈ . Consequently Q[ ] ( )

Q
x x∈ τN . 

Therefore we proved that {Q[ ]  Q } ( ),   
Q

x Q x x X, ∈ ⊂ ∀ ∈τN . 

Let us show now that {Q[ ]  Q }x Q, ∈  is a base of ( )
Q
xτN  x X∀ ∈ .  

Take x X∈  and ( )
Q
xΕ ∈ τN , we need to find Q Q∈  such that Q[ ]x E⊂ . Since 

( )
Q
xΕ ∈ τN  there is a Qτ -open G  such that x G E∈ ⊂  then by the definition of 

Qτ  there is a Q Q∈  such that Q[ ]x G⊂ . Consequently Q[ ] .x G E⊂ ⊂  

It remains to show that ( ) {Q[ ]  Q },   
Q
x x Q x X⊂ , ∈ ∀ ∈τN . Take x X∈  and 

( )
Q
xΕ ∈ τN , we need to find P Q∈ such that P[ ]E x= . Since {Q[ ]  Q }x Q, ∈  is a 

base of ( )
Q
xτN  there is Q Q∈  such that Q[x] E⊂  

Write : Q ( )P E E= ∪ × , since Q  is a filter, P Q∈  it is clear that [ ]P x E⊂ . ♦ 

 

We can see in Murdeshwar-Naimpally (1966), (pg. 11) that the family 

( ) {Q[ ]  Q }
Q
x x Qτ = , ∈N  satisfies the Hausdorff conditions, then we can say that 

there is only one topology τ  such that for each x X∈ , the family of all neighbours 

at x is ( ) {Q[ ]  Q }
Q
x x Q= , ∈τN . It’s easy to prove the same result for the local 

quasi- uniform spaces.  

 
 

Examples 4.5.   
The quasi-uniformity bases of the example 3.9 induce different topologies, like this:  

� The usual uniformity E on Ñ induces the usual (or Euclidean) topology e  on 

Ñ; clearly, for a given x X∈  the family { }[ ]: 0 {] [ 0}U x x x> = − , + , >εε ε ε ε  

is a base of ( )xεN . 
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� The quasi-uniformity base S  on Ñ (example b)) induces the Sorgenfrey 

topology σ ; for a given x X∈  the family { }Q [ ]: 0 {[ [ 0}x x x> = , + , >εε ε ε  is 

a base of ( )xσN . 

 

Lemma 4.6   

Let ( )i i IQ ∈  be a non-empty family of local quasi-uniformities on X.   

a) 
i I i iQ i I Qτ τ
∈∨ ∈= ∨ .   

b) 
ii I ii I QQτ τ

∈∩ ∈⊂ ∩ .  

c) 
i I i iQ i I Qτ τ
∈∧ ∈⊂ ∧ .  

d) If i I i i I iQ Q∈ ∈∧ = ∩ ,  then 
iQ i I Qτ τ

∧ ∈= ∧ .   

e) If { }1,...,I n= the family  1{Q Q Q }n i iQ:= ... : ∈o oB  is a base of some local 

quasi-uniformity Q  then 
1

n
i i

Q Q
τ τ

=∧
= .   

Proof:  

a) and b) are easy to check.  

)c Follows from )b  because i I i i I iQ Q∈ ∈∧ ⊂ ∩ .    

d) Follows from )b . 

e) Evidently, for each i I∈  we have iQ Q⊂ , and 
1

n

i
i

Q Q
=

⊂ I . By the definition of 

the greatest lower bound  we have 1

n

i iQ Q=⊂ ∧ , hence 
1

n
Qi

Q
i

ττ
=∧

⊂ . 

Let us show that 
1

n
Qi

Q
i

ττ
=∧

⊃ . Take 
1

n
i iQ

G
=∧

∈τ  and x G∈ , there is a U  such that 

[ ]U x G⊂ .  For each 1

n

i iU Q=∈ ∧  we have 1

n

i iV Q=∈ ∧ , such that  

[ ] [ ]V V x U x... ⊂ .o o  

Since for each 1i n= , ..., , iV Q∈ , the set V V...o o  belongs to B , which is a base 

of Q . Then there is an entourage V V...o o such that each x X∈  we have 

[ ] [ ]V V x U x G... ⊂ ⊂o o , consequently QG∈ .τ  ♦  
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Remark 4.7  

1. If Q  is a quasi-uniformity,  the 4.6(e) is a particular case of 3.16.  

2. If ( )X Q, ⊤
 is local quasi-uniform then Q  is weakly locally symmetric at 

x X∈  if and only if ( ) ( )
Q Q

x xτ τ⊂
⊤

N N  (it’s direct consequence of  3.12).  

With the following example we can see that in general the inclusions of the 3.15(b) 

and 4.6(c) can be strict.  

 

Example 4.8   

Let X  be an infinite set, and τ  be 2T  topology in X  such that any τ -continuous 

function [0 1]f X: → ,  is constant and ( )
Per

Q Q τ:=  (see 3.5). Then:  

a) { }Q Xτ
∧

= ∅, .   
To prove this, suppose that { }Q Xτ

∧
≠ ∅, .  Hence Qτ

∧
 is a completely regular 

topology, which is not indiscrete. This implies that there is a non-constant Qτ
∧
-

continuous [0 1]f X: → , .  Since Qτ τ
∧

⊂  then [0 1]f X: → ,  is τ -continuous as 

well, but this contradicts our choice of τ .  Consequently, Qτ
∧
 is the indiscrete 

topology.  

 

b) Q Q Q
τ τ τ

∧
≠ ∩ .⊤    

Follows from the first statements because Q Q
τ τ∩ ⊤  is a 1T -topology.  

 

c) Q Q Q∧ ≠ ∩ .⊤   

It is a immediate consequence of b). 

 

A topological space ( )X τ,  is called local quasi-uniformizable, (resp. quasi-

uniformizable, local uniformizable, uniformizable) if there is a local quasi-

uniformity (resp. quasi-uniformity, local uniformity, uniformity)  Q  such that the 

topology induced by Q  is τ , i.e. Qτ τ= . When this uniform type structure Q  is 

unique we say that ( )X τ,  is uniquely local quasi-uniformizable, (resp. quasi-

uniformizable, local uniformizable, uniformizable). 
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In this setting, there are two classic results that we have to mention.  The first is due 

to Weil, and it shows that a "topological space is uniformizable if and only if it is 

completely regular".  

The second theorem assures that any "topological space is quasi-uniformizable" and 

it was proved by Krishnan(1955). Later Császér(1960), showed this result, but 

subsequently Pervin gave a more direct and simpler proof. Pervin proved that for 

any topological space ( )X τ, , the topology generated by the quasi-uniformity 

( )
Per

Q τ  (see 3.5) is τ .  

Although the local quasi-uniformity formally has weaker properties than the quasi-

uniformity, however to construct the local quasi-uniformity compatible with a given 

topology seems not to be easier, than to build a quasi-uniformity with the same 

property.  

Referências bibliográficas 

Clifford A.H. and Preston G. B.(1961). The algebraic theory of semigroups. Mathematical 

Surveys I, 7, American Mathematical Society. Rhode Island .  

Császár, A.(1960). Fondements de la topologie génerale., Gauthier-Villars. Paris.  

Dungundji, J.(1967). Topology. Ally and Bacon. Boston.  

Fletcher, P.; Lindgren, W.(1974). Locally quasi-uniform spaces with countable bases. Duke 

Math. J,. 41, 231-340.  

Fletcher, P.; Lindgren, W.(1982). Quasi-uniform spaces, Lecture Notes in Pure and Applied 

Mathematics. 77, Marcel Dekker, Inc.. New York. 

Krishnan, V.S.(1955).  A note on semiuniform spaces,. J. Madras, Univ.Sect. B, 25, 123-124.  

Kelley, J.L (1975). General topology. Van Nostrand. Princeton.  

Künzi, H.(1993). Quasi-Uniform spaces-eleven years later. Topology Proceedings, 18, 143–

171.  

Künzi, H.(2001). Nonsymmetric Distances and Their Associated Topologies: About the 

Origins of Basic Ideas in the Area of Asymetric Topology. Handbook of the history of 

general topology, 3, 853-968. Hist. Topol. 3, Kluwer Acad. Publ. Dordrecht. 

Murdeshwar, M.G., Naimpally, S.A.(1966). Quasi-Uniform Topological Spaces. Noordhoff.  

Nacbin, L.(1948 a). Sur les espaces topologiques ordonnés. C.R.Acad. Sci.Paris, 226, 381-

382.  

Nacbin, L.(1948 b). Sur les espaces uniformes ordonnés. C.R.Acad. Sci.Paris,  226, 774-775  

Nacbin, L.(1965). Topology and Order. D. van Nostrand. Princeton.  



Uniform type structures 

 171 

Pervin,W.J. (1963). Quasi-uniformization of topological spaces. Math. Ann., 150, 316-317. 

Picado,  J. (1998) Weil Nearness Spaces, Portugaliae Mathematica, 55,(2) 233-254. 

Williams, J.(1972). Loccally Uniform Spaces. Transactions of the American Mathematical 

Society, 168.  

Weil, A. (1937). Sur les espaces à structure uniform et sur la topologie générale., Gauthier-

Villars. Paris.  

 


