Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Similars in SciELO
Share
Ciência & Tecnologia dos Materiais
Print version ISSN 0870-8312
C.Tecn. Mat. vol.19 no.3-4 Lisboa July 2007
DIA MUNDIAL DOS MATERIAIS 2007
Lead-acid battery evolution axis
Mário R. Pedro1, César A.C. Sequeira2
1A.A. Silva - Autosil, Estrada de Paço de Arcos, 48, 2770-129 Paço de Arcos, Portugal. mario.s.pedro@gmail.com
2 Departamento de Engenharia Química e Biológica, Instituto Superior Técnico,
Universidade Técnica de Lisboa (TU Lisbon), Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal. cesarsequeira@ist.utl.pt
ABSTRACT: The recent environmental requirements had compelled the automobile and energy production industries to look for new solutions. The hybrid and electric vehicles and the photovoltaic and wind systems are examples of this research.
Thus, it became necessary to find energy storage systems (ESSs) for these new applications. This study is developed in this direction, taking as starting-point the most common SAE: the lead-acid (LAB). Subsequently, alternatives to LAB were studied. The work focused in two points: electrodes and their components. The solutions implicate the total or partial substitution of the lead electrodes by polymers, ceramic or fiber glass, being almost ready to commercialization bipolar batteries with ceramic base that announce the double of specific energy. These ceramics can also be added to the positive paste. The negative paste has been less investigated than the other.
As alternative, the Li-ion battery is close to reach its development peak and his mineral reserves are an order of magnitude lower than the ones of lead/nickel. The nickel is used in the hybrid vehicles NiMH batteries, also constituted by other elements that limit their production and increase the battery cost. ZEBRA Battery is a valid option, although it requires working with temperatures above 200ºC.
The ultra battery, based in LAB, can be an alternative in a near future, as well as the bipolar ones. The conclusion for storage systems for renewable energy sources is that the LAB will continue to prevail in the next decade.
Keywords: lead-acid, lead electrodes, active mass, hybrid vehicle, photovoltaic power system, Li-ion
RESUMO: As recentes imposições ambientais obrigaram a indústria automóvel e a de produção de energia a procurar novas soluções. Os veículos híbridos e eléctricos e os sistemas fotovoltaicos e eólicos são casos paradigmáticos dessa pesquisa.
Assim, torna-se necessário encontrar sistemas de armazenamento de energia (SAE) para estas novas aplicações. É neste sentido que este estudo se desenvolve, tomando como ponto de partida o SAE mais difundido: o chumbo ácido (PbA). Foram posteriormente estudadas alternativas ao PbA. Devido à elevada complexidade deste, o trabalho incidiu em dois pontos: os eléctrodos e os seus constituintes. As soluções passam por substituir total ou parcialmente o chumbo dos eléctrodos por polímeros, cerâmicos ou fibra de vidro, estando próximas da comercialização baterias bipolares com base cerâmica que anunciam o dobro da energia específica. Estes cerâmicos podem também ser aditivados à matéria activa positiva. A matéria activa negativa tem sido pouco investigada.
Dentro das alternativas, a bateria de Li-ião está a alcançar o seu limite de desenvolvimento e as reservas minerais estão uma ordem de grandeza abaixo das do chumbo/níquel. O níquel é utilizado nas baterias de NiMH dos veículos híbridos, constituídas também por outros elementos que limitam a sua produção e aumentam o preço da bateria. A bateria ZEBRA é uma opção válida, embora seja necessário trabalhar a temperaturas acima dos 200ºC.
A ultra bateria, baseada no PbA, poderá ser uma alternativa a médio prazo, bem como as bipolares. Nos SAE para fontes de energia renováveis, concluiu-se que nenhum conseguirá substituir o PbA na próxima década.
Palavras-chave: chumbo ácido, eléctrodos de chumbo, matérias activas, veículo híbrido, aplicação fotovoltaica, Li-ião
Texto completo disponível apenas em PDF.
Full text only available in PDF format.
REFERENCES
[1] R.L. Clarke, U.S. Pat. 5,126,218 (1992)
[2] M.L. Soria, J. Fullea, F. Sáez and F. Trinidad, J. Power Sources 78 (1999) 220-230 [ Links ]
[3] S.K. Martha, B. Hariprakash, S.A. Gaffoor, D.C. Trivedi and A.K. Shukla, J. Chem. Sci. 118 (2006) 93-98
[4] B. Hariprakash, A.U. Mane, S.K. Martha, S.A. Gaffoor, S.A. Shivashankar and A.K. Shukla, Electrochem. and Solid-State Let. 7 (2004) A66-A69
[5] Green Car Congress: Volvo Group Introduces Heavy-Duty Hybrids, available in http://www.greencarcongress.com/2006/03/volvo_group_int.html (viewed on 30 July 2007)
[6] Atraverda Limited Ebonex Technology, available in http://www.atraverda.com/Ebonex_bipolar.htm (viewed on 30 July 2007)
[7] Firefly Technical White Paper, available in http://www.fireflyenergy.com/images/stories/pdfs/White%20Paper%2010.30.06.pdf (viewed on 30 July 2007)
[8] Power Technology Inc. New Battery Technology, available in http://www.pwtcbattery.com/technology/ (viewed on 30 July 2007)
[9] K. Kelley, C. Ostermeier and M. Maroon, U. S. Pat. 7,033,703 (2006)
[10] E. Gyengea, J. Jungb, B. Mahato, J. Power Sources 113 (2003) 388-395
[11] P.T. Moseley, J. Power Sources 64 (1997) 47-50
[12] W.-H. Kao, J. Electrochem. Soc. 143 (1996) 2841-2846
[13] B. Hariprakash, A.U. Mane, S.K. Martha, S.A. Gaffoor, S.A. Shivashankar and A.K. Shukla, J. Appl. Electrochem. 34 (2004) 1039-1044
[14] R.J. Ball, R. Evans, E.L. Thacker and R. Stevens, J. Materials Science 38 (2003) 3013-3017
[15] W.-H. Kao, P. Patel and S.L. Haberichter, J. Electrochem. Soc. 144 (1997) 1907-1911
[16] Y. Guo, M. Wu and S. Hua, J. Power Sources 64 (1997) 65-69
[17] The Design of VRLA Batteries for Successful Operation in a High-rate, Partial-state-of-charge Regime, available in http://www.sandia.gov/ess/Publications/Conferences/2005/Moseley.pdf (viewed on 30 July 2007)
[18] J. Valenciano, A. Sánchez, F. Trinidad and A.F. Hollenkamp, J. Power Sources 158 (2006) 851-863
[19] D.P. Boden, J. Arias and F.A. Fleming, J. Power Sources 95 (2001) 277-292
[20] K. Sawai, T. Funato, M. Watanabe, H. Wada, K. Nakamura, M. Shiomi and S. Osumi, J. Power Sources 158 (2006) 1084-1090
[21] M. Calábek, K. Micka, P. Krivák and P. Baca, J. Power Sources 158 (2006) 864-867
[22] G. Petkova, P. Nikolov and D. Pavlov, J. Power Sources 158 (2006) 841-845
[23] Lithium-ion batteries: An unexpected conductor, available in http://www.nature.com/nmat/journal/v1/n2/full/nmat736.html (viewed on 30 July 2007)
[24] IEA: International Energy Agency, Report IEA PVPS T3-18 (2004)
[25] Green Car Congress: Report: Toyota Will Delay Use of Li-Ion in the Prius, available in http://www.greencarcongress.com/2007/06/report_toyota_w.html (viewed on 30 July 2007)
[26] R.M. Dell, Sol. Sta. Ion. 134 (2000) 139-158
[27] Liden, D. and Reddy, T.B., Handbook of Batteries, 3rd Ed., McGraw-Hill Inc., Nova Iorque (2002)
[28] Battery University.com, available in http://www.batteryuniversity.com (viewed on 30 July 2007)
[29] L.T. Lam and R. Louey, J. Power Sources 158 (2006) 1140-1148
[30] M. Perrin, Y.M. Saint-Drenan, F. Mattera and P. Malbranche, J. Power Sources 144 (2005) 402-410
[31] U.S. Geological Survey Mineral Commodity Summaries 2007, available in http://minerals.usgs.gov/minerals/pubs/mcs/2007/mcs2007.pdf (viewed on 30 July 2007)
[32] The Trouble with Lithium - Implications of Future PHEV Production for Lithium Demand, available in http://www.meridian-int-res.com/index.htm (viewed on 30 July 2007)
[33] C.J. Higgins, H.S. Matthews, C.T. Hendrickson and M.J. Small, Transp. Res. Part D 12 (2007) 103-114