Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Similars in SciELO
Share
Portugaliae Electrochimica Acta
Print version ISSN 0872-1904
Port. Electrochim. Acta vol.25 no.2 Coimbra 2007
Test of Nucleation Models from Compiled Data
J. Torrent-Burgués*
Department of Chemical Engineering, Universitat Politècnica de Catalunya, C/ Colom 1, 08222 Terrassa (Barcelona), Spain
Received 17 May 2006; accepted 6 September 2006
Abstract
Nucleation models have been tested using reported experimental nucleation data in several systems dealing with electrocrystallization from aqueous solutions, and with a wide range of supersaturations or overpotentials. The critical nucleus size has been calculated and the results obtained with the classical and atomistic models have been compared and discussed. In order to compare these values with those occurring in crystallization, the values of the critical nucleus size for several crystallization systems have also been calculated, and then compared and commented.
Keywords: nucleation, electrocrystallization, atomistic model, classical models, critical nucleus size
Texto disponível em PDF
Full text only in PDF format
References
1. D. Kashchiev, Nucleation. Basic Theory with Applications, Butterworths-Heinemann, Oxford, 2000. [ Links ]
2. S. Auer, D. Frenkel, Nature 413 (2001) 711.
3. K.J. Klabunde, Nanoscale Materials in Chemistry, Wiley Interscience, N.Y., 2001.
4. H. Liu, F. Favier, K. Ng, M.P. Zach, R.M. Penner, Electrochim. Acta 47 (2001) 671.
5. M.P. Pileni, Cryst. Res. Technol. 33 (1998) 1155.
6. R. Rodríguez-Clemente, A. López, J. Gómez, J. Torrent-Burgués, V.M. Castaño, J. European Ceramic Soc. 18 (1998) 1351.
7. J. Torrent-Burgués, J. Gómez, A. López, R. Rodríguez-Clemente, Crys. Res. Tech. 34 (1999) 757.
8. J. Torrent-Burgués, R. Rodríguez-Clemente, Crys. Res. Tech. 36 (2001) 1075.
9. B. Lewis, Chap. 2 in Crystal Growth, B.R. Pamplin, Ed., Pergamon Press, Oxford, 1980.
10. I.V. Markov, Crystal Growth for Beginners, World Scientific, Singapore, 1995.
11. K. Sangwal, M. Jakubczyk, Chap. 3 in Elementary Crystal Growth, K. Sangwal, Ed., Saan Publishers, Lublin, 1994.
12. O. Söhnel, J. Garside, Precipitation, Butterworth-Heinemann, Oxford, 1992.
13. S. Stoyanov, Nucleation theory for high and low supersaturations, Current Topics in Materials Science, vol. 3, E. Kaldis, Ed., North-Holland Publishing Company, Amsterdam, 1979.
14. S. Toschev, Chap. 1 in Crystal Growth: An Introduction, P. Hartman, Ed., North-Holland Publishing Company, Amsterdam, 1973.
15. A. Milchev, Contemporary Physics 32 (1991) 321.
16. A. Milchev, S. Stoyanov, J. Electroanal. Chem. 72 (1976) 33.
17. A. Milchev, S. Stoyanov, R. Kaischew, Thin Solid Films 22 (1974) 255.
18. E. Bosco, S.K. Rangarajan, J. Electroanal. Chem. 134 (1982) 213.
19. G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, J. Electroanal. Chem. 138 (1982) 225.
20. A. Milchev, R. Lacmann, J. Cryst. Growth 110 (1991) 919.
21. A. Milchev, I. Montenegro, J. Electroanal. Chem. 333 (1992) 93.
22. E. Budevski, G. Staikov, W.J. Lorenz, (a) Electrochim. Acta 45 (2000) 2559; (b) Electrochemical Phase Formation and Growth, VCH, Weinheim, 1996.
23. A. Milchev, Electrocrystallization. Fundamentals of Nucleation and Growth, Kluwer Academic Publishers, Boston, 2002.
24. D. Kashchiev, D. Verdoes, G.M. van Rosmalen, J. Crystal Growth 110 (1991) 373.
25. D. Verdoes, D. Kashchiev, G.M. van Rosmalen, J. Crystal Growth 118 (1992) 401.
26. K. Sangwal, W. Polak, Crys. Res. Tech. 32 (1997) 509.
27. D. Kashchiev, J. Chem. Phys. 76 (1982) 5098.
28. J. Torrent, R. Rodríguez, J.H. Sluyters, J. Crystal Growth 131 (1993) 115.
29. T.P. Dirkse, Electrochim. Acta 35 (1990) 1445.
30. S. Toschev, I.V. Markov, Ber. Bunsengen. Physik Chem. 73 (1969) 184.
31. E. Guaus, J. Torrent-Burgues, Portug. Electrochim. Acta 19 (2001) 247.
32. P.J. Sonneveld, W. Visscher, E. Barendrecht, Electrochim. Acta 37 (1992) 1199.
33. R. Krumm, B. Guel, C. Schmitz, G. Staikov, Electrohim. Acta 45 (2000) 3255.
34. M. Arbib, B. Zhang, V. Lazarov, D. Stoychev, A. Milchev, C. Buess-Herman, J. Electroanal. Chem. 510 (2001) 67.
35. A. Milchev, E. Vassileva, J. Electroanal. Chem. 107 (1980) 337.
36. V. Bostanov, E. Mladenova, D. Kashchiev, J. Electroanal. Chem. 481 (2000) 7.
37. K. Marquez, G. Staikov, J.W. Schultze, Electrochim. Acta 48 (2003) 875.
38. A.E. Alvarez, D.R. Salinas, J. Electroanal. Chem. 566 (2004) 393.
39. M. Yang, Z. Hu, J. Electroanal. Chem. 583 (2005) 46.
40. A. Kelaidopoulou, G. Kokkinidis, A. Milchev, J. Electroanal. Chem. 444 (1998) 195.
41. A. Milchev, D. Stoychev, V. Lazarov, A. Papoutsis, G. Kokkinidis, J. Crystal Growth 226 (2001) 138.
42. O. Brylev, L. Roué, D. Bélanger, J. Electroanal. Chem. 581 (2005) 22.
43. A.N. Correia, S.A.S. Machado, L.A. Avaca, J. Electroanal. Chem. 488 (2000) 110.
44. M.E. Hyde, O.V. Klymenko, R.G. Compton, J. Electroanal. Chem. 534 (2002) 13.
45. S. Nagalingam, S. Vasudevan, P. Ramasamy, S. Laddha, Krist. Technik 15 (1980) 1151.
46. B.K. Paul, M.S. Joshi, J. Phys. D: Appl. Phys. 9 (1976) 1253.
47. J. Gomez-Morales, J. Torrent-Burgués, R. Rodriguez-Clemente, J. Crystal Growth 169 (1996) 331.
48. M.C. van der Leeden, D. Kashchiev, G.M. van Rosmalen, J. Colloid Interface Sci. 152 (1992) 338.
49. H.E. Lundager Madsen, J. Crystal Growth 80 (1987) 371.
50. I. Liszi, T. Blickle, J. Liszi, Crys. Res. Tech. 20 (1985) 1309.
51. A. Packter, A. Alleem, Crys. Res. Tech. 16 (1981) 33.
52. A.E. Nielsen, O. Söhnel, J. Crystal Growth 11 (1971) 233.
53. A.M. Kulkarni, C.F. Zukoski, Langmuir 18 (2002) 3090.
54. S. Boomadevi, R. Dhanasekaran, P. Ramasamy, Cryst. Res. Technol. 37 (2002) 159.
* Corresponding author. E-mail address: juan.torrent@upc.edu