Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Ciência e Técnica Vitivinícola
versão impressa ISSN 0254-0223
Ciência Téc. Vitiv. v.24 n.1 Dois Portos 2009
Revisão: As bactérias do ácido lático do vinho Parte II
António Inês 1, Tania Tenreiro2, Rogério Tenreiro2, Arlete Mendes-Faia 1
1IBB-Centro de Genética e Biotecnologia (IBB-CGB), Universidade de Trás-os-Montes e Alto Douro, Apartado 1013, 5001-813 Vila Real, Portugal
2 Universidade de Lisboa, Faculdade de Ciências, Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Edifício ICAT, Campus da FCUL, Campo Grande, 1749-016 Lisboa, Portugal
(Manuscrito recebido em 15.11.08 . Aceite para publicação em 15.12.08)
RESUMO
A fermentação maloláctica (FML), prática corrente em vinificação, é um processo de desacidificação biológica, realizado por bactérias do ácido láctico (BAL). A complexidade e diversidade da actividade metabólica das BAL sugerem que a FML pode afectar positiva ou negativamente a qualidade do produto final.
Nesta revisão apresenta-se uma caracterização geral das BAL em termos de taxonomia, metabolismo, habitats e aplicações industriais e o estado-da-arte sobre as BAL do vinho e do seu papel no processo de vinificação. Os efeitos benéficos (hidrólise dos glucosídeos pela acção de ß-glucosidases) e nocivos (degradação da arginina e formação de carbamato de etilo; formação de aminas biogénicas, nomeadamente histamina, tiramina e putrescina) das BAL do vinho, bem como a temática das culturas starter, são igualmente explorados para ilustrar o interesse enológico deste grupo particular de microrganismos.
Palavras-chave: bactérias do ácido láctico, fermentação maloláctica, â-glucosidases, aminas biogénicas, vinho
SUMMARY
Review: wine lactic acid bacteria Part II
Malolactic fermentation (MLF), the deacidification carried by lactic acid bacteria (LAB), is a longstanding process in winemaking and the complexity and diversity of the metabolic activity of LAB suggest that MLF can positively or negatively affect the quality of the final product. This review presents a general characterization of LAB in terms of taxonomy, metabolism, habitats and industrial applications, followed by a state-of-the-art on wine LAB and their role in the winemaking process. A particular emphasis is presented on the beneficial (the hydrolysis of glucosides by ß-glucosidases) and harmful effects (the degradation of arginine and formation of ethyl carbamate; the formation of biogenic amines such as histamine, tyramine and putrescine) of wine LAB, as well as on the issue of starter cultures, to illustrate their oenological interest.
Key words: lactic acid bacteria, malolactic fermentation, â-glucosidases, biogenic amines, wine
Texto completo disponível apenas em PDF.
Full text only available in PDF format.
REFERÊNCIAS BIBLIOGRÁFICAS
Alberto M., Arena M., Manca de Nadra M., 2006. Putrescine production from agmatine by Lactobacillus hilgardii: Effect of phenolic compounds Food Control 18 (8), 898-893.
Alegria E., Lopez I., Ruiz J., Saenz J., Fernandez E., Zarazaga M., Dizy M., Torres C., Ruiz-Larrea F., 2004. High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol FEMS Microbiol Lett. 230 (1), 53-61.
Amerine M.A., Kunker R.E., 1968. Microbiology of winemaking. Annu Rev Microbiol. 22, 323-358.
Arena M., Manca de Nadra M., 2001. Biogenic amine production by Lactobacillus. J Appl Microbiol 90 (2), 158-162.
Arena M., Manca de Nadra M., 2005. Influence of ethanol and low pH on arginine and citrulline metabolism in lactic acid bacteria from wine. Res.Microbiol 156 (8), 858-864.
Arena M., Manca de Nadra M., Munoz R., 2002. The arginine deiminase pathway in the wine lactic acid bacterium Lactobacillus hilgardii X1B: structural and functional study of the arcABC genes. Gene 301 (1-2), 61-66.
Arena M., Saguir F., Manca de Nadra M., 1999. Arginine, citrulline and ornithine metabolism by lactic acid bacteria from wine. Int.J Food Microbiol 52 (3), 155-161.
Arnink K., Henick-Kling T., 2005. Influence of Saccharomyces cerevisiae and Oenococcus oeni strains on successful malolactic conversion in wine. Am.J.Enol.Vitic. 56 (3), 228-237.
Azevedo Z., Couto J., Hogg T., 2002. Citrulline as the main precursor of ethyl carbamate in model fortified wines inoculated with Lactobacillus hilgardii: a marker of the levels in a spoiled fortified wine. Lett. Appl. Microbio.l 34 (1), 32-36.
Barbagallo R., Spagna G., Palmeri R., Torriani S., 2004. Assessment of ?-glucosidase activity in selected wild strains of Oenococcus oeni for malolactic fermentation. Enzyme and Microbial Technology 34 (3-4), 292-296.
Barcelona-Andres B., Marina A., Rubio V., 2002. Gene structure, organization, expression, and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis. J. Bacteriol. 184 (22), 6289-6300.
Barthelmebs L., Divies C., Cavin J., 2001. Molecular characterization of the phenolic acid metabolism in the lactic acid bacteria Lactobacillus plantarum. Lait 81, 161-171.
Barthelmebs L., Lecomte B., Divies C., Cavin J., 2000. Inducible metabolism of phenolic acids in Pediococcus pentosaceus is encoded by an autoregulated operon which involves a new class of negative transcriptional regulator. J Bacteriol. 182 (23), 67246731.
Bartowsky E., 2005. Oenococcus oeni and malolactic fermentation -moving into the molecular arena. Aust. J. Grape and Wine Res 11 (2), 174-187.
Bartowsky E., Henschke P., 1999. Use of a polymerase chain reaction for specific detection of the malolactic bacterium Oenococcus oeni (formerly Leuconostoc oenos) in grape juice and wine samples. Aust. J. Grape and Wine Res. 5, 39-44.
Bartowsky E., Henschke P., 2000. Management of malolactic fermentation for the buttery diacetyl flavour in wine. The Austn. Grapegrower and Winemaker (28th Technical Issue 438a), 58 67.
Bartowsky E., Henschke P., 2004. The buttery attribute of wine diacetyl-desirability, spoilage and beyond. Int. J. Food Microbiol. 96 (3), 235-252.
Bartowsky E., Burvill T., Henschke P., 1997. Diacetyl in wine: Role of malolactic bacteria and citrate. The Aust. Grapegrower and Winemaker (25th Technical Issue 402a), 130-135.
Bartowsky E., Henschke P., 1995. Malolactic fermentation and wine flavour. Aust. Grapegrower and Winemaker Annual Technical Issue, 8394.
Beltramo C., Desroche N., Tourdot-Marechal R., Grandvalet C., Guzzo J., 2006. Real-time PCR for characterizing the stress response of Oenococcus oeni in a wine-like medium. Res.Microbiol 157 (3), 267-274.
Beltramo C., Grandvalet C., Pierre F., Guzzo J., 2004. Evidence for multiple levels of regulation of Oenococcus oeni clpP-clpL locus expression in response to stress. J Bacteriol. 186 (7), 22002205.
Bhatia Y., Mishra S., Bisaria V.S., 2002. Microbial -glucosidases: cloning, properties, and applications. Crit. Rev. Biotechnol. 22 (4), 375-407.
Blasco L., Ferrer S., Pardo I., 2003. Development of specific fluorescent oligonucleotide probes for in situ identification of wine lactic acid bacteria FEMS Microbiol.Lett. 225, 115-123.
Bodmer S., Imark C., Kneubühl M., 1999. Biogenic amines in foods: Histamine and food processing. Commentar. Inflamm. Res. 48, 296300.
Boido E., Lloret A., Medina K., Carrau F., Dellacassa E., 2002. Effect of ?-glycosidase activity of Oenococcus oeni on the glycosylated flavor precursors of Tannat wine during malolactic fermentation. J Agric.Food Chem 50 (8), 2344-2349.
Bonizzi I., Feligini M., Aleandri R., Enne G., 2007. Genetic traceability of the geographical origin of typical Italian water buffalo Mozzarella cheese: a preliminary approach. J Appl Microbiol. 102, 667-673. Bourdineaud J., 2006. Both arginine and fructose stimulate pH-independent resistance in the wine bacteria Oenococcus oeni. Int J Food Microbiol. 107 (3), 274-280.
Bourdineaud J., Nehme B., Tesse S., Lonvaud-Funel A., 2003. The ftsH gene of the wine bacterium Oenococcus oeni is involved in protection against environmental stress. Appl. Environ. Microbiol. 69, 2512-2520.
Bourdineaud J., Nehme B., Tesse S., Lonvaud-Funel A., 2004. A bacterial gene homologous to ABC transporters protect Oenococcus oeni from ethanol and other stress factors in wine. Int J Food Microbiol. 92 (1), 1-14.
Bover-Cid S., Iquierdo-Pulido M., Mariné-Font A., Vidal-Carou M., 2006. Biogenic mono-, diand polyamine contents in Spanish wines and influence of a limited irrigation. Food Chem. 96 (1), 43-47.
Buckenhüskes H.J., 1993. Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. FEMS Microbiol. Rev. 12, 253-272.
Cavin J., Andioc V., Etievant P., Divies C., 1993. Ability of wine lactic acid bacteria to metabolize phenol carboxylic acids. Am. J. Enol. Vitic. 44, 7680.
Cavin J., Barthelmebs L., Divies C., 1997. Molecular characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum: gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification, and characterization. Appl Environ Microbiol. 63 (5), 1939-1944.
Chambel L.M.M., 2001. Análise taxonómica polifásica em Leuconostoc e Weissella. 284 p. Tese de Doutoramento, Faculdade de Ciências da Universidade de Lisboa.
Chatonnet P., Viala C., Dubourdieu D., 1997. Influence of polyphenolic components of red wines on the microbial synthesis of volatile phenols. Am. J. Enol. Vitic., 48, 443448.
Christensen J., Dudley E., Pederson J., Steele J., 1999. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek. 76 (1-4), 217-246. 153
Claisse O., Lonvaud-Funel A., 2001. Detection de bactéries lactiques produisant du 3-hydroxypropionaldehyde (precurseur dacroleine) à partir du glycerol par tests moléculaires. Lait 81, 173-181.
Clarridge J.E., 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17 (4), 840-62.
Coenye T., Vandamme P., 2003. Extracting phylogenetic information from whole-genome sequencing projects: the lactic acid bacteria as a test case. Microbiol. 149 (Pt 12), 3507-3517.
Colagrande O., Silva A., Fumi M., 1994. Recent applications of biotechnology in wine production. Biotechnol. Prog. 10, 2-18.
Connil N., Le Breton Y., Dousset X., Auffray Y., Rince A., Prevost H., 2002. Identification of the Enterococcus faecalis tyrosine decarboxylase operon involved in tyramine production. Appl. Environ. Microbiol. 68 (7), 3537-3544.
Copeland W.C., Domena J.D., Robertus J.D. 1989. The molecular cloning, sequence and expression of the hdcB gene from Lactobacillus 30A. Gene. 85, 259-265.
Costello P., Henschke P., 2002. Mousy off-flavor of wine: precursors and biosynthesis of the causative N-heterocycles 2ethyltetrahydropyridine, 2-acetyltetrahydropyridine, and 2-acetyl1-pyrroline by Lactobacillus hildargii DSM 20176. J. Agric. Food Chem. 50, 70797087.
Costello P.J., Lee T.H., Henschke P.A., 2001. Ability of lactic acid bacteria to produce N-heterocycles causing mousy off-flavour in wine. Aust. J. Grape and Wine Res. 7, 160-167.
Coton E., Rollan G., Lonvaud-Funel A., 1998b. Histidine carboxylase of Leuconostoc oenos 9204: purification, kinetic properties, cloning and nucleotide sequence of the hdc gene. J Appl Microbiol 84 (2), 143-151.
Coton E., Rollan G., Bertrand A., Lonvaud-Funel A., 1998a. Histamine-producing lactic acid bacteria in wines: early detection, frequency, and distribution. Am.J.Enol.Vitic. 49 (2), 199-204.
Cotton M., Coton E., Lucas P., Lonvaud A., 2004. Identification of the gene encoding a putative tyrosine decarboxylase of Carnobacterium divergens 508. Development of molecular tools for the detection of tyramine-producing bacteria. Food Microbiol. 21: 125-130.
Cotter P., Hill, C. 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol.Biol.Rev. 67 (3): 429 453.
Coucheney F., Desroche N., Bou M., Tourdot-Marechal R., Dumontier S., Guzzo J., 2005. A new approach for selection of Oenococcus oeni strains in order to produce malolactic starters. Int J Food Microbiol. 105 (3): 463-470.
Couto J.A., Hogg T.A., 1994. Diversity of ethanol-tolerant lactobacilli isolated from Douro fortified wine: Clustering and identification by numerical analysis of electrophoretic protein profiles. J Appl Bacteriol .76 (5): 487-491.
Cox D.J., Henick-Kling T., 1989. Chemiosmotic energy from malolactic fermentation. J Bacteriol 171 (10): 5750-5752.
Cox D.J., Henick-Kling T., 1990. A comparison of lactic acid bacteria for energy-yielding, ATP, malolactic enzyme systems. Am.J.Enol.Vitic. 41 (3): 215-218.
Cox D.J., Henick-Kling, T., 1995. Protonmotive force and ATP generation during malolactic fermentation. Am. J. Enol. Vitic. 46: 319-323.
Crowell E.A., Guymon J.F., 1975. Wine Constituents Arising from Sorbic Acid Addition, and Identification of 2-Ethoxyhexa-3,5Diene as Source of Geranium-Like Off-Odor. Am. J. Enol. Vitic. 26: 97-102.
Curk M.C., Boeufgras J.M., Decaris B., Gavini F., Kersters K., Larpent J.P., Le Bourgeois P., Renault P., de Roissart. H., Rouvier C., 1994. Méthodes didentification des bactéries lactiques. In: Bactéries Lactiques 141-168. de Roissart H.e Luquet F.M. (Coordonnateurs), Vol. I. Lorica, Uriage, France.
Davis C., Silveira N.F., Fleet G.H., 1985. Occurrence and properties of bacteriophages of Leuconostoc oenos in Australian wines. Appl Environ Microbiol 50 (4): 872-876.
Davis C., Wibowo D., Fleet G., Lee T., 1988. Properties of wine lactic acid bacteria: their potential enological significance. Am. J. Enol. Vitic. 39: 137-142.
De Bortoli E., Bovo B., Giacomini A., Corich V., 2007. Evaluation of enological characteristics of autochthonous yeast strains selected for the production of Prosecco II.19 VQPRD wine. 8th International Symposium of Enology of Bordeaux
De las Rivas B., Marcobal A., Munoz R., 2005. Improved multiplex-PCR method for the simultaneous detection of food bacteria producing biogenic amines. FEMS Microbiol Lett 244 (2): 367-372. 155
De Revel G., Bertrand A., 1993. A method for the detection of carbonyl compounds in wine: glyoxal and methylglyoxal. J. Sci Food Agric. 61: 267272.
Delaherche A., Bon E., Dupé A., Lucas M., Arvelier B., De Daruvar A., Lonvaud-Funel A., 2006. Instraspecific diversity of Oenococcus oeni strains determined by sequence analysis of target genes. Appl. Microbiol. Biotechnol. 73: 394-403.
Delaherche A., Claisse O., Lonvaud-Funel A., 2004. Detection and quantification of Brettanomyces bruxellensis and ropy Pediococcus damnosus strains in wine by real-time polymerase chain reaction. J. Appl. Microbiol. 97: 910915.
Dellaglio F., de Roissart H., Torriani S., Curk M.C. e Janssens D., 1994. Caractéristiques générales des bactéries lactiques. In: Bactéries Lactiques. 25-116. de Roissart H.e Luquet F.M. (Coordonnateurs), Vol. I. Lorica, Uriage, France.
Desroche N., Beltramo C. Guzzo J., 2005. Determination of an internal control to apply reverse transcription quantitative PCR to study stress response in the lactic acid bacterium Oenococcus oeni. J Microbiol Methods 60 (3): 325-333.
Dicks L., van Vuuren H., 1988. Identification and physiological characteristics of heterofermentative strains of Lactobacillus from South African red wines. J. Appl. Bacteriol. 64: 505513.
Dicks L., Dellaglio F., Collins M., 1995b. Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov. Int J Syst Bacteriol. 45: 395-397. 156
Dicks L., Loubser P., Augustyn O., 1995a. Identification of Leuconostoc oenos from South African fortified wines by numerical analysis of total soluble cell protein patterns and DNADNA hybridizations. J. Appl. Bacteriol. 79: 43-48.
Dicks L.M.T., Vuuren H.J.J., Dellaglio F., 1990. Taxonomy of Leuconostoc species, particularly Leuconostoc oenos, as revealed by numerical analysis of total soluble cell protein patterns, DNA base compositions, and DNA-DNA hybridizations. Int. J. Syst. Bacteriol. 40 (1): 83-91.
DIncecco N., Bartowsky E., Kassara S., Lante A., Spettoli P., Henschke P., 2004. Release of glycosidically bound flavour compounds of Chardonnay by Oenococcus oeni during malolactic fermentation. Food Microbiology 21 (3): 257-265.
Divol B., Tonon T., Morichon S., Gindreau E., Lonvaud-Funel A., 2003. Molecular characterization of Oenococcus oeni genes encoding proteins involved in arginine transport. J Appl Microbiol. 94 (4): 738-746.
Du Plessis H., Dicks L., Lambrechts M., Pretorius I., Du Toit M., 2004. Identification of lactic acid bacteria isolated from South African brandy base wines. Int. J. Food Microbio. 91: 19-29.
Du Toit M., Pretorius I., 2000. Microbial spoilage and preservation of wine: using weapons for natures own arsenal South African J. Enol. Vitic. 21 (Special Issue): 74-96.
Edinger W.D., Splittstoesser D.F., 1986. Sorbate tolerance by lactic acid bacteria associated with grapes and wine. Journal of Food Science 51, 10771078.
Edwards C.G., Collins M.D., Lawson P.A., Rodriguez A.V., 2000. Lactobacillus nagelii sp. nov., an organism isolated from a partially fermented wine. Int J Syst Evol Microbiol 50 (Pt 2): 699-702.
Edwards C.G., Haag K.M., Collins M.D., 1998a. Identification and characterization of two lactic acid bacteria associated with sluggish/stuck fermentations. Am.J.Enol.Vitic. 49 (4): 445-448.
Edwards C.G., Haag K.M., Collins M.D., Hutson R.A., Huang Y.C., 1998b. Lactobacillus kunkeei sp. nov.: a spoilage organism associated with grape juice fermentations. J Appl Microbiol 84 (5): 698-702.
Endo A., Okada S., 2006. Oenococcus kitaharae sp. nov., a non-acidophilic and non-malolactic-fermenting oenococcus isolated from a composting distilled shochu residue. Int. J. Syst. Evol. Microbiol. 56: 2345-2348.
Fernández M. e Zúñiga M., 2006. Amino acid catabolic pathways of lactic acid bacteria. Crit Rev Microbiol. 32 (3):155-83.
Fernandez M., del Rio B., Linares D.M., Martin M.C., Alvarez M.A., 2006a. Real-Time polymerase chain for quantitative detection of histamine-producng bacteria: use in cheese production. J. Dairy Sci. 89: 3763-3769.
Fernandez M., Florez A.B., Linares D.M., Mayo B., Alvarez M.A., 2006b. Early PCR detection of tyramine-producing bacteria during cheese production. J. Dairy Res. 73: 318-321.
Fernandez M., Linares D.M., Alvarez M.A., 2004. Sequencing of the tyrosine decarboxylase gene cluster of Lactococcus lactis IPLA 655 and the development of a PCR method for detecting tyrosine decarboxylating lactic acid bacteria. J. Food Protec. 67 (11): 25212529.
Fernandez M., Linares D.M., Rodriguez A., Alvarez M.A., 2007. Factors affecting tyramine production in Enterococcus durans IPLA 655. Appl. Microbiol. Biotechnol, 73: 1400-1406.
Fleet G.H., 1993. The microorganisms of winemaking, isolation enumeration and identification. In: Wine Microbiology and Biotechnology. 125. Fleet G.H., (ed.), Harwood Academic Publishers, Chur, Switzerland.
Fortier L., Tourdot-Marechal R., Divies C., Lee B., Guzzo J., 2003. Induction of Oenococcus oeni H+-ATPase activity and mRNA transcription under acidic conditions. FEMS Microbiol.Lett. 222 (2): 165-169.
Fugelsang K.C., 1997. Wine Microbiology. 245 p. Chapman & Hall. London.
Galland D., Tourdot-Maréchal R., Abraham M., Chu K.S., Guzzo J., 2003. Absence of malolactic activity is a characteristic of H+ATPase-deficient mutants of the lactic acid bacterium Oenococcus oeni. Appl Environ Microbiol 69 (4), 1973-1979.
Gardini F., Zaccarelli A., Belletti N., Faustini F., Cavazza A., Martuscelli M., Mastrocola D., Suzzi G., 2005. Factors influencing biogenic amine production by a strain of Oenococcus oeni in a model system. Food Control 16 (7), 609-616.
Garvie E.I., 1986. Genus Leuconostoc. In: Bergey´s manual of systematic bacteriology, vol. 2 . section 12 Gram Positive cocci 1071-1075. Sneath P.H.A., Mair N.S., Sharpe M.E., Holt J.G. (Eds.), Williams and Wilkins, Baltimore.
Gindreau E., Walling E., Lonvaud-Funel A., 2001. Direct polymerase chain reaction detection of Pediococcus damnosus strains in wine. J Appl Microbiol 90 (4), 535-542.
Gloria M., Watson B., Simon-Sarkadi L., Daeschel M., 1998. A survey of biogenic amines in Oregon Pinot noir and Cabernet sauvignon wines. Am.J.Enol.Vitic. 49 (3), 279-282.
Gonzalez J., Mas M., Tabla R., Moriche J., Roa I., Rebollo J.E., Cáceres P., 2003. Autochthonous starter effect on the microbiological, physicochemical and sensorial characteristics of Ibores goats milk cheeses. Lait 83: 193-202.
González-Candelas L., Aristoy M.C., Polaina J., Flors A., 1989. Cloning and characterization of two genes from Bacillus polymyxa expressing ?-glucosidase activity in Escherichia coli. Appl Environ Microbiol 55: 3173-3177.
González-Marco A., Ancín-Azpilicueta C., 2006. Influence of Lees Contact on Evolution of Amines in Chardonnay Wine. Journal of Food Science 71 (9), C544-C548.
Grimaldi A., Bartowsky E., Jiranek V., 2005a. A survey of glycosidase activities of commercial wine strains of Oenococcus oeni. Int J Food Microbiol 105 (2): 233-244.
Grimaldi A., Bartowsky E., Jiranek V., 2005b. Screening of Lactobacillus spp. and Pediococcus spp. for glycosidase activities that are important in oenology J Appl Microbiol 99 (5): 10611069.
Grimaldi A., McLean H., Jiranek V., 2000. Identification and partial characterization of glycosidic activities of commercial strains of the lactic acid bacterium Oenococcus oeni. Am.J.Enol.Vitic. 51 (4): 362-369.
Guarneri T., Rossetti L., Giraffa G., 2001. Rapid identification of Lactobacillus brevis using the polymerase chain reaction. Lett. Appl. Microbiol., 33:377381.
Guerrini S., Bastianini A., Blaiotta G., Granchi L., Moschetti G., Coppola S., Romano P., Vincenzini M., 2003. Phenotypic and genotypic characterization of Oenococcus oeni strains isolated from Italian wines. Int J Food Microbiol 83 (1): 1-14.
Guerrini S., Bastianini A., Granchi L., Vincenzini M., 2002. Effect of oleic acid on Oenococcus oeni strains and malolactic fermentation in wine. Current Microbiol. 44 (1): 5-9.
Günata Y., Bayonove C., Cordonnier R., Arnaud A., Galzy P., 1990. Hydrolysis of grape monoterpenyl glycosides by Candida molischiana and Candida wickerhamii_ ?-glucosidases. J.Sc.Food Agric. 50: 499-506.
Günata Z., 1994. Étude de exploitation par voie enzymatique des precurseurs damines du raisin de nature glycosidique. Rev.Oenol.Tech.Vitivinic.Oenol. 74: 22-27.
Guzzo J., Jobin M., Delmas F., Fortier L., Garmyn D., Tourdot-Marechal R., Lee B., Divies C., 2000. Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase. Int.J Food Microbiol 55 (1-3): 27-31.
Hansen E.B., 2002. Commercial bacterial starter cultures for fermented foods of the future. Int J Food Microbiol 78 (1-2): 119-131.
Henick-Kling T., 1995. Control of malolactic fermentation in wine: Energetics, flavour modification and methods of starter culture preparation. Journal of Applied Bacteriology 9 (Suppl.): 29S37S.
Hirschhäuser S., Frohlich J., Gneipel A., Schonig I., Konig H., 2005. Fast protocols for the 5S rDNA and ITS-2 based identification of Oenococcus oeni. FEMS Microbiol Lett, 244: 165-171.
Huynh Q., Snell E., 1985. Pyruvoyl-dependent histidine decarboxylases. Preparation and amino acid sequences of the beta chains of histidine decarboxylase from Clostridium perfringens and Lactobacillus buchneri. J Biol.Chem 260 (5): 2798-2803.
Inês, A.F.H., 2007. Abordagem polifásica na caracterização e selecção de bactérias do ácido láctico de vinhos da Região Demarcada do Douro. 198 p. Tese de Doutoramento, Universidade de Trás-os-Montes e Alto Douro.
Ingledew W.M., Kunkee R.E., 1985. Factors Influencing Sluggish Fermentations of Grape Juice. Am. J. Enol. Vitic., 36: 65-76. 160
Jackman P.J.H., 1985. Bacterial taxonomy based on electrophoretic whole-cell protein patterns. In: Chemical methods in bacterial systematics. 115-129. Goodfellow, M., Minnikin, D.E. (Eds). Academic Press, London
Jensen K., Edwards C., 1991. Modification of the API rapid CH system for characterization of Leuconostoc oenos. Am.J.Enol.Vitic. 42 (3): 274-277.
Jobin M., Garmyn D., Divies C., Guzzo J., 1999. Expression of the Oenococcus oeni trxA gene is induced by hydrogen peroxide and heat shock. Microbiology 145 (Pt 5): 1245-1251.
Kalac P., Krizec M., 2003. A Review of biogenic amines and polyamines in beer. J. Inst. Brew. 109 (2): 123-128. Kelly W., Asmundson R., Hopcroft D., 1989. Growth of Leuconostoc oenos under anaerobic conditions. Am.J.Enol.Vitic. 40: 277-282.
Kleerebezem M., Boekhorst J., van Kranenburg R., Molenaar D., Kuipers O.P., Leer R., Tarchini R., Peters S. A., Sandbrink H.M., Fiers M.W.E.J., Stiekema W., Lankhorst R.M.K., Bron P.A., Hoffer S.M., Groot M.N.N., Kerkhoven R., de Vries M., Ursing B., de Vos W.M., Siezen R.J. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100 (4): 1990-1995.
Kodama S., Suzuki S., de la Teja P., Yotsuzuka F., 1994. Urea contribution to ethyl carbamate formation in comercial wine during storage. Am.J.Enol.Vitic. 45: 17-24.
Konings W.N. , 2006. Microbial transport: adaptations to natural environments. Antonie Van Leeuwenhoek. 90(4):325-42.
Konnings W.N., Lolkema J.S., Bolhuis H., vav Veen H.W., Poolman B., Driessen A.J.M., 1997. The role of transport processes in survival of lactic acid bacteria. Antonie van Leeuwenhoek 71: 117-128.
Koort J., 2006. Polyphasic taxonomic studies of lactic acid bacteria associated with non-fermented meats. 62p. Academic Dissertation Ph.D. thesis. Faculty of Veterinary Medicine. University of Helsinki.
Kroppenstedt R.M., 1985. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Bacterial Systematics 173-199. Goodfellow M., Minnikin D.E. (Eds.). Academic Press, London.
Kunkee R.E., 1991. Some roles of malic acid in the malolactic fermentation in wine making. FEMS Microb. Rev., 88: 55-72.
Labarre C., Diviès C., Guzzo J., 1996. Genetic organization of the mle locus and identification of a mleR-like gene from Leuconostoc oenos. Appl Environ Microbiol 62 (12): 4493-4498.
Lafon-Lafourcade S., Joyeux A., 1979. Techniques simplifiées pour le dénombrement et lidentification des microorganismes vivants dans les mouts et les vins. Connaissance Vigne Vin 13(4): 295-310.
Landete J.M., Ferrer S., Pardo I., 2005. Which lactic acid bacteria are responsible for histamine production in wine? J Appl Microbiol 99 (3): 580-586.
Landete J.M., 2005. Estudio y caracterización molecular de la producción de aminas biógenas por parte de bacterias lácticas de origen enológico. 148 p. Tese de Doutoramento, Universitat de València.
Le Jeune C.L., Lonvaud-Funel A., Ten Brink B., Hofstra H., van der Vossen J.M. 1995. Development of a detection system for histidine decarboxylating lactic acid bacteria based on DNA probes, PCR and activity test.. J Appl Bacteriol 78 (3): 316-326.
Lechiancole T., Blaiotta G., Messina D., Fusco V., Villani F., Salzano G., 2006. Evaluation of intra-specific diversities in Oenococcus oeni through analysis of genomic and expressed DNA. Syst Appl Microbiol 29 (5): 375-381.
Leitão M., Marques A., San Romao M., 2005. A survey of biogenic amines in commercial Portuguese wines. Food Control 16 (3): 199-204.
Leitão M., Teixeira H., Barreto Crespo M., San Romao M., 2000. Biogenic amines occurrence in wine. Amino acid decarboxylase and proteolytic activities expression by Oenococcus oeni. J Agric.Food Chem. 48 (7): 2780-2784.
Leroy F., De Vuyst L., 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology 15 (2): 67-78.
Li H., Zhang C., Liu Y., 2006. Species attribution and distinguishing strains of Oenococcus oeni isolated from Chinese wines World J. Microbio.l Biotechnol. 22: 515-518.
Liu S., 1993. Arginine metabolism in malolactic wine lactic acid bacteria and its oenological implications. PhD thesis. Massey University, New Zealand.
Liu S., 2002. A review: malolactic fermentation in wine - beyond deacidification J. Appl. Microbiol. 92 (4): 589-601.
Liu S., Pilone G., 1998. A review: Arginine metabolism in wine lactic acid bacteria and its practical significance. J Appl Microbio.l 84 (4): 315-327.
Lonvaud-Funel A., 2001. Biogenic amines in wines: role of lactic acid bacteria. FEMS Microbiol Lett. 199(1), 913.
Lonvaud-Funel A., Joyeux A., 1994. Histamine production by wine lactic acid bacteria: isolation of a histamine-producing strain of Leuconostoc oenos. J Appl Bacteriol. 77 (4): 401-407.
Lopes M., Pereira C., Rodrigues F., Martins M., Mimoso M., Barros T., Figueiredo Marques J., Tenreiro R., Almeida J., Barreto Crespo M., 1999. Registered designation of origin areas of fermented food products defined by microbial phenotypes and artificial neural networks. Appl Environ.Microbiol 65 (10): 44844489.
Lopez I., Ruiz-Larrea F., Cocolin L., Orr E., Phister T., Marshall M., Van der Gheynst J., Mills. D.A., 2003. Design and evaluation of PCR primers for analysis of bacterial populations in wine by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 69: 6801-6807.
Lucas P., Lonvaud-Funel A., 2002. Purification and partial gene sequence of the tyrosine decarboxylase of Lactobacillus brevis IOEB 9809. FEMS Microbiol Lett. 211 (1): 85-89.
Lucas P., Landete J., Coton M., Coton E., Lonvaud-Funel A., 2003. The tyrosine decarboxylase operon of Lactobacillus brevis IOEB 9809: characterization and conservation in tyramine-producing bacteria FEMS Microbiol Lett. 229 (1): 65-71.
Lucas P., Wolken W., Claisse O., Lolkema J., Lonvaud-Funel A., 2005. Histamine-producing pathway encoded on an unstable plasmid in Lactobacillus hilgardii 0006. Appl Environ Microbiol 71 (3): 1417-1424.
Manca de Nadra M., Strasser de Saad A., 1995. Polysaccharide production by Pediococcus pentosaceus from wine, Int. J. Food Microbiol. 27:101106.
Manca de Nadra M., Arena M., Saguir F., 2003. Nutritional requirements and amino acids utilization by lactic acid bacteria from wine - A short review. Food, Agriculture & Environmental 1 (34): 76-79.
Mangani S., Guerrini S., Granchi L., Vincenzini M., 2005. Putrescine accumulation in wine: role of Oenococcus oeni. Curr.Microbiol 51 (1) 6-10.
Mansfield A., Zoecklein B., Whiton R., 2002. Quantification of glycosidase activity in selected strains of _Brettanomyces bruxellensis_ and _Oenococcus oeni. Am.J.Enol.Vitic. 53 (4): 303 307.
Marcobal A., de las Rivas B., Moreno-Arribas M.V., Muñoz R., 2006b. Evidence for horizontal gene transfer as origin of putrescine production in Oenococcus oeni RM83. Appl Environ Microbiol. 72 (12): 7954-7958.
Marcobal A., de las Rivas B., Moreno-Arribas M.V., Muñoz R., 2004. Identification of the ornithine decarboxylase gene in the putrescine-producer Oenococcus oeni BIFI-83. FEMS Microbiol Lett 239 (2): 213-220.
Marcobal A., Martin-Alvarez P., Polo M., Munoz R., Moreno-Arribas M., 2006a. Formation of biogenic amines throughout the industrial manufacture of red wine. J. Food Prot. 69: 397-404.
Marquis R., Bender G., Murray D., Wong A., 1987. Arginine deiminase system and bacterial adaptation to acid environments. Appl.Environ.Microbiol. 53 (1): 198-200.
Martin M., Fernandez M., Linares D., Alvarez M., 2005. Sequencing, characterization and transcriptional analysis of the histidine decarboxylase operon of Lactobacillus buchneri. Microbiology 151 (4): 1219-1228.
Martín-Álvarez P., Marcobal A., Polo C., Moreno-Arribas M.V., 2006. Influence of technological practices on biogenic amine contents. in red wines. Eur. Food Res. Technol. 222: 420-424.
Martineau B., Henick-Kling T., 1995. Performance and diacetyl production of commercial strains of malolactic bacteria in wine. J.Appl.Bacteriol. 78: 526-536.
Mascarenhas M.A., 1984. The Occurrence of Malolactic Fermentation and Diacetyl Content of Dry Table Wines from Northeastern Portugal. Am. J. Enol. Vitic. 35:1:49-51.
Masson F., Talon R., Montel M., 1996. Histamine and tyramine production by bacteria from meat products. Int .J. Food Microbiol. 32 (1-2): 199-207.
Mateo J.J., Jiménez M., 2000. Monoterpenes in grape juice and wines. J Chromatogr A 881 (1-2): 557-567.
Matthews A., Grimaldi A., Walker M., Bartowsky E., Grbin P., Jiranek V., 2004. Lactic acid bacteria as a potential source of enzymes for use in vinification. Appl Environ.Microbiol 70 (10): 5715-5731.
McMahon H., Zoecklein B., Fugelsang K., Jasinski Y., 1999. Quantification of glycosidase activities in selected yeasts and lactic acid bacteria. J. Indust. Microbiol. Biotechnol. 23 (3): 198-203.
Mendes Ferreira A., Inês A., Mendes Faia A., 2001. Actividade glucosidísica de leveduras isoladas de mostos e vinhos da regiâo do Douro (1.as Jornadas do ICETA). UTAD. Vila Real de Trásos-Montes.
Mendes-Faia A. 1990. Caracterização química de vinhos inoculados com bactérias lácticas. Ciência Tec.Vitic. 9 (1-2): 43 52. [ Links ]
Mendes-Faia M., 1991. Tecnologia de vinhos: programa, conteúdo e métodos de ensino., Universidade de Trás-os-Montes e Alto Douro, Vila Real.
Mills D.A., Rawsthorne H., Parker C., Tamir D., Makarova K., 2005. Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol. Rev. 29 (3) 465-475.
Mira de Orduna R., Patchett M., Liu S., Pilone G., 2001. Growth and arginine metabolism of the wine lactic acid bacteria Lactobacillus buchneri and Oenococcus oeni at different pH values and arginine concentrations. Appl. Environ. Microbiol. 67 (4): 1657-1662.
Molenaar D., Bosscher J.S., ten Brink B., Driessen A.J., Konings W.N., 1993. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J Bacteriol. 175: 2864-2870.
Moreno-Arribas M., Polo M., Jorganes F., Munoz R., 2003. Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol. 84 (1): 117123.
Moreno-Arribas V., Lonvaud-Funel A., 1999. Tyrosine decarboxylase activity of Lactobacillus brevis IOEB 9809 isolated from wine and L. brevis ATCC 367. FEMS Microbiol. Lett. 180 (1): 55-60.
Moreno-Arribas V., Lonvaud-Funel A., 2001. Purification and characterization of tyrosine decarboxylase of Lactobacillus brevis IOEB 9809 isolated from wine. FEMS Microbiol. Lett. 195 (1): 103107.
Moreno-Arribas V., Torlois S., Joyeux A., Bertrand A., Lonvaud-Funel A., 2000. Isolation, properties and behaviour of tyramine-producing lactic acid bacteria from wine. J. Appl. Microbiol. 88 (4): 584-593.
Neeley E., Phister T., Mills D., 2005. Differential Real-Time PCR assay for enumeration of lactic acid bacteria in wine. Appl. Environ. Microbiol. 71: 8954-8957.
Nehmé B., Ganga M., Lonvaud-Funel A., 2006. The arginine deiminase locus of Oenococcus oeni includes a putative arginyltRNA synthetase ArgS2 at its 3'-end. Appl. Microbiol. Biotechnol. 70: 590-597.
Olive D., Bean P., 1999. Principles and applications of methods for DNA-based typing of microbial organisms. J. Clin. Microbiol. 37 (6): 1661-1669.
Olsen E.B., Russell J.B., Henick-Kling T., 1991. Electrogenic L-malate transport by Lactobacillus plantarum: a basis for energy derivation from malolactic fermentation. J. Bacteriol. 173 (19): 6199-6206.
Osborne J.P., Dube Morneau A., Mira de Orduna R., 2006. Degradation of free and sulfur-dioxide-bound acetaldehyde by malolactic lactic acid bacteria in white wine. J. Appl. Microbiol. 101 (2): 474-479.
Osborne J.P, Mira D.O., Pilone G., Liu S., 2000. Acetaldehyde metabolism by wine lactic acid bacteria. FEMS Microbiol. Lett. 191 (1): 51-55.
Ough C.S., Crowell E.A., Gutlove B.R., 1988. Carbamyl compound reactions with ethanol. American Journal of Enology and Viticulture, 39 (3): 239242.
Palmeri R., Spagna G., 2007. ß-glucosidase in celluar and acellular form for winemaking application. Enz. Microbial Technol. 40 (3): 382-387.
Pardo I., García M., Zúñiga M., Uruburu F., 1988. Evaluation of API 50 CHL system for identification of Leuconostoc oenos. Am. .J. Enol. Vitic. 39 (4): 347-350.
Patarata L., Pimentel M., Pot B., Kersters K., Faia A.M. 1994. Identification of lactic acid bacteria isolated from Portuguese wines and musts by SDS-PAGE. J. Appl. Bacteriol. 76: 288293.
Pinzani P., Bonciani L., Pazzagli M., Orlando C., Guerrini S., Granchi L., 2004. Rapid detection of Oenococcus oeni in wine by real-time quantitative PCR. Lett. Appl. Microbiol. 38: 118 124.
Pramateftaki P., Metafa M., Kallithraka S., Lanaridis P., 2006. Evolution of malolactic bacteria and biogenic amines during spontaneous malolactic fermentations in a Greek winery. Lett. Appl. Microbiol. 43 (2): 155-160.
Priest F., Austin B., 1993. Modern Bacterial Taxonomy. 2nd ed. Chapman & Hall. London. Pripis-Nicolau, L., De Revel, G., Bertrand, A. & Lonvaud-Funel, A. (2004) - Methionine catabolism and production of volatile sulphur compounds by OEnococcus oeni. J. Appl. Microbiol. 96 (5): 1176-1184.
Pripis-Nicolau L., De Revel G., Bertrand A., Lonvaud-Funel A., 2004. Methionine catabolism and production of volatile sulphur compounds by OEnococcus oeni. J. Appl. Microbiol. 96 (5): 11761184.
Quere F., Deschamps A., Urdaci M., 1997. DNA probe and PCR-specific reaction for Lactobacillus plantarum. J. Appl. Microbiol. 82 (6): 783-790.
Radler F., Fath K., 1991. Histamine and other biogenic amines in wines. International Symposium on nitrogen in grapes and wine: 185-195.
Reguant C., Bordons A., 2003. Typification of Oenococcus oeni strains by multiplex RAPD-PCR and study of population dynamics during malolactic fermentation. J. Appl. Microbiol. 95 (2): 344 353.
Renouf V., Claisse O., Lonvaud-Funel A., 2006. rpoB gene: A target for identification of LAB cocci by PCR-DGGE and melting curves analyses in real time PCR. J. Microbiol. 67(1):162-70.
Ribéreau-Gayon P., Dubourdieu D., Donèche B., Lonvaud A., 2006. Handbook of Enology - The Microbiology of Wine and Vinifications. Vol. 1, 441 p. John Wiley & Sons Ltd, West Sussex, England.
Rice S., Koehler P., 1976. Tyrosine and histidine decarboxylase activities of Pediococcus cerevisiae and Lactobacillus species and the production of tyramine in fermented sausages. J. Milk Food Technol. 39 (3): 166-169.
Rodas A.M., Ferrer S., Pardo I., 2003. 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Syst. Appl. Microbio.l 26 (3): 412-422.
Rodas A.M., Ferrer S., Pardo I., 2005. Polyphasic study of wine Lactobacillus strains: taxonomic implications. Int. J. Syst. Evo.l Microbiol. 55 (Pt 1): 197-207.
Rodriguez H., de las Rivas B., Munoz R., 2007. Efficacy of recA gene sequence analysis in the identification and discrimination of Lactobacillus hilgardii strains isolated from stuck wine fermentations. Int. J. Food Microbiol. 115: 70-78.
Rodriguez M., Lopes C., van Broock M., Valles S., Ramon D., Caballero A., 2004. Screening and typing of Patagonian wine yeasts for glycosidase activities J. Appl. Microbiol. 96 (1) 84-95.
Rollan G., Coton E., Lonvaud-Funel A., 1995. Histidine decarboxylase activity of Leuconostoc oenos 9204. Food Microbiol. 12: 455-461.
Rosi I., Domizio P., Vinella M., Salicone M., 1995. Hydrolysis of grape glycosides by enological yeast ?-glucosidases. 1623-1635. In: Food Flavors: Generation, Analysis and Process Influence. Charalambous, G., (Ed.). Elsevier Science, Amsterdam.
Rosi I., Vinella M., Domizio P. 1994. Characterization of ?glucosidase activity in yeasts of oenological origin. J. Appl. Bacteriol. 77 (5): 519-527.
Rosselló-Mora R., Amann R., 2001. The species concept for prokaryotes. FEMS Microbiol. Rev. 25: 39-67.
Salema M., Lolkema J.S., Romão M.V.S., Dias M.C.L., 1996. The proton motive force generated in Leuconostoc oenos by L-malate fermentation. J. Bacteriol. 178 (11): 3127-3132.
Sato H., Yanagida F., Shinohara T., Suzuki M., Suzuki K., Yokotsuka K., 2001: Intraspecific diversity of Oenococcus oeni isolated during red wine-making in Japan. FEMS Microbiol. Lett. 202 (1): 109-114.
Semedo T.M.L., 2005. Virulence traits in enterococci: phenotypic and molecular characterization in clinical and environmental isolates. 113 p. Tese de Doutoramento, Faculdade de Ciências da Universidade de Lisboa.
Silla Santos M.H. 1996. Biogenic amines: their importance in foods. Int. J. Food Microbiol. 29: 213-231.
Slomkowska A., Ambroziak W., 2002. Biogenic amine profile of the most popular Polish beers European Food Research and Technology 215 (5): 380-383.
Sohier D., Lonvaud-Funel A., 1998. Rapid and sensitive in situ hybridization method for detecting and identifying lactic acid bacteria in wine. Food Microbiol. 15 (4): 391-397.
Sohier D., Coulon J., Lonvaud-Funel A., 1999. Molecular identification of Lactobacillus hilgardii and genetic relatedness with Lactobacillus brevis. Int. J. Syst. Bacteriol. 49: 1075-1081.
Soufleros E., Barrios M., Bertrand A., 1998. Correlations between biogenic amines and other wine compounds. Am. J. Enol. Vitic.. 49 (3) 266-278.
Spano G., Massa S., 2006. Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis. Crit. Rev. Microbiol. 32 (2) 77-86.
Spano G., Beneduce L., de Palma M.A., Vernile A., Massa S., 2006. Characterization of wine Lactobacillus plantarum by PCRDGGE and RAPD-PCR analysis and identification of Lactobacillus plantarum strains able to degrade arginine. World J. Microbiol. Biotechnol. 22: 769773.
Spano G., Beneduce L., Tarantino D., Zapparoli G., Massa S., 2002. Characterization of Lactobacillus plantarum from wine must by PCR species. Lett. Appl. Microbiol. 35: 370374.
Spano G., Capozzi V., Vernile A., Massa S., 2004. Cloning, molecular characterization and expression analysis of two small heat shock genes isolated from wine Lactobacillus plantarum. J. Appl. Microbiol. 97 (4): 774-782.
Spano G., Lonvaud-Funel A., Claisse O., Massa S., 2007. Analysis of Lactobacillus plantarum and Oenococcus oeni populations in red wine. Cur. Microbiol. 54: 9-13.
Spano G., Rinaldi A., Ugliano M., Moio L., Beneduce L., Massa S., 2005. A ?-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses. J. Appl. Microbiol. 98 (4): 855-861.
Sponholz W.-R., 1993. Wine spoilage by microrganisms. In: Wine Microbiology and Biotechnology. 395-420 . Fleet, G.H. (Ed.) Harwood Academic Publishers, Chur, Switzerland.
Stackebrandt E., Goebel B.M., 1994. A place for DNADNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846 849.
Stackebrandt E., Frederiksen W., Garrity G.M., Grimont P. A., Kampfer P., Maiden M.C., Nesme X., Rossello-Mora R., Swings J., Truper H.G., Vauterin L., Ward A.C., Whitman W.B., 2002. Report of the Ad Hoc Committee for the Re-Evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52, 1043-1047.
Strauss M., Jolly N., Lambrechts M., van Rensburg P., 2001. Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J. Appl. Microbiol. 91 (1): 182-190.
Swiegers J., Bartowsky E., Henschke P., Pretorius I., 2005. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 11 (2): 139-173.
Tenreiro R., 1995. Análise taxonómica em Leuconostoc oenos uma perspectiva polifásica. 284 p. Tese de Doutoramento, Faculdade de Ciências da Universidade de Lisboa.
Tenreiro R., Santos M.A., Paveia H., Vieira G., 1994. Inter-strain relationships among wine leuconostocs and their divergence from other Leuconostoc species, as revealed by low frequency restriction fragment analysis of genomic DNA. J. Appl. Bacteriol. 77 (3) 271-280.
Terrade N., Mira de Orduna R., 2006. Impact of winemaking practices on arginine and citrulline metabolism during and after malolactic fermentation J. Appl. Microbiol. 101 (2): 406-411.
Teti D., Visalli M., McNair H., 2002. Analysis of polyamines as markers of (patho)physiological conditions, Journal of Chromatography B, 781, 107149.
Tonon T., Lonvaud-Funel A., 2000. Metabolism of arginine and its positive effect on growth and revival of Oenococcus oeni. J. Appl. Microbiol. 89 (3): 526-531.
Tonon T., Lonvaud-Funel A., 2002. Arginine metabolism by wine Lactobacilli isolated from wine Food Microbiology 19 (5): 451 461.
Tonon T., Bourdineaud J., Lonvaud-Funel A., 2001a. Catabolisme de larginine par Oenococcus oeni : aspects énergétiques et généntiques, Lait 81: 139-150.
Tonon T., Bourdineaud J., Lonvaud-Funel A., 2001b. The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene. Res. Microbiol 152 (7): 653-661.
Topisirovic L., Kojic M., Fira D., Golic N., Strahinic I., Lozo J., 2006. Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation. Int. J. Food Microbiol. 112, 230-235.
Torrea-Goni D., Ancín-Azpilicueta C., 2001. Influence of yeast strain on biogenic amine contents in wines: relationship with the utilization of amino acids during fermentation. Am. J. Enol. Vitic. 52 (3): 185190.
Torriani S., Felis G., Dellaglio F., 2001. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol. 67, 3450-3454.
Tracey R.P., Britz T.J., 1987. A numerical taxonomic study of Leuconostoc oenos strains from wine. J. Appl. Bacteriol. 63, 523
Ugliano M., Genovese A., Moio L., 2003. Hydrolysis of wine aroma precursors during malolactic fermentation with four commercial starter cultures of Oenococcus oeni. J. Agric. Food Chem. 51 (17): 5073-5078.
Uthurrya C.A., Suarez Lepe J.A., Lombardero J., Garcia Del Hierro J.R., 2006. Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine. Food Chem. 94 (2): 262-270.
Vaaler G., Brasch M., Snell E., 1986. Pyridoxal 5'-phosphatedependent histidine decarboxylase. Nucleotide sequence of the hdc gene and the corresponding amino acid sequence. J. Biol. Chem. 261 (24): 1101.
Van der Westhuizen L., Agenbach W., Loos M., Schoombee N., 1981. Comparison of procedures for isolation malolactic bacteria from wine. Am. J. Enol. Vitic. 32 (2) 168-170.
Van Rensburg P., Pretorius I., 2000. Enzymes in winemaking: harnessing natural catalysts for efficient biotransformations - A review. South African J. Enol. Vitic. 21, 52-73.
Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J., 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60 (2): 407-438.
Vanderslice P., Copeland W., Robertus J., 1986. Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a, J. Biol. Chem. 261 (32): 15186-15191.
Vaquero I., Marcobal A., Munoz R., 2004. Tannase activity by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol. 96 (2): 199-204.
Versari A., Parpinello G., Cattaneo M., 1999. Leuconostoc oenos and malolactic fermentation in wine: a review. J. Ind. Microbiol Biotechn. 23, 447-455.
Vidal-Carou M., Ambatlle-Espunyes A., Ulla-Ulla M., Marin-Font, A., 1990. Histamine and tyramine in spanish wines: their formation during the winemaking process. Am. J. Enol. Vitic. 41 (2): 160-167.
Viti C., Giovannetti L., Granchi L., Ventura S., 1996. Species attribution and strain typing of Oenococcus oeni (formerly Leuconostoc oenos) with restriction endonuclease. Res. Microbiol.147 (8): 651-660.
Walling E., Gindreau E., Lonvaud-Funel A., 2001. La biosynthèse dexopolysaccharide par des souches de Pediococcus damnosus isoées du vin : mise au point doutils moléculaires de detection. Lait 81, 289-300.
Wibowo D., Eschenbruch R., Davis C., Fleet G., Lee T., 1985. Occurrence and growth of lactic acid bacteria in wine: a Review. Am. J. Enol. Vitic. 36 (4): 302-313.
Wolken W., Lucas P., Lonvaud-Funel A., Lolkema J., 2006. The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis. J.Bacteriol. 188 (6): 2198-2206.
Yurdugul S., Bozoglu F. ,2002. Studies on an inhibitor produced by lactic acid bacteria of wines on the control of malolactic fermentation. Eur. Food Res. Technol. 215, 3841.
Zapparoli G., Moser M., Dellaglio F., Tourdot-Marechal R., Guzzo J. 2004. Typical metabolic traits of two Oenococcus oeni strains isolated from Valpolicella wines. Lett. Appl. Microbiol. 39 (1): 48-54.
Zapparoli G., Reguant C., Bordons A., Torriani S., Dellaglio F., 2000. Genomic DNA fingerprinting of Oenococcus oeni strains by pulsed-field gel electrophoresis and randomly amplified polymorphic DNA-PCR. Curr. Microbiol, 40, 351-355.
Zapparoli G., Torriani S., Pesente P., Dellaglio F., 1998. Design and evaluation of malolactic enzyme gene targeted primers for rapid identification and detection of Oenococcus oeni in wine. Lett. Appl. Microbiol. 27 (5): 243-246.
Zavaleta A., Martinez-Murcia A., Rodriguez-Valera F., 1997. Intraspecific genetic diversity of Oenococcus oeni as derived from DNA fingerprinting and sequence analyses. Appl Environ Microbiol 63 (4): 1261-1267.
Zuniga M., Champomier-Verges M., Zagorec M., Perez-Martinez G., 1998. Structural and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sake. J. Bacteriol. 180 (16): 4154-4159.
Zuniga M., Miralles Md M.C. Perez-Martinez G., 2002. The Product of arcR, the sixth gene of the arc operon of Lactobacillus sakei, is essential for expression of the arginine deiminase pathway. Appl. Environ. Microbiol. 68 (12): 6051-6058.