Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Silva Lusitana
versão impressa ISSN 0870-6352
Silva Lus. v.11 n.2 Lisboa dez. 2003
Caracterização do Escoamento e Fluxo Atmosférico de Calor Latente em Montado de Sobro
Abel Martins Rodrigues*1 e Gabriel Paulo Alcântara Pita**
*Investigador Auxiliar
Estação Florestal Nacional. Departamento de Silvicultura e Produtos Florestais,
Av. da República, Quinta do Marquês, 2780-149 OEIRAS
**Professor Auxiliar
Instituto Superior Técnico. Departamento de Engenharia Mecânica, Av. Rovisco Pais, 1049-001 LISBOA
Sumário. A partir de medição, em torre de observação agronómica em montado de sobro, das variáveis micrometerológicas usuais e do regime turbulento de flutuações de componentes de velocidade do vento e temperatura do ar, procedeu-se a uma caracterização dos parâmetros aerodinâmicos e, por inspecção da equação de Penman-Monteith, da respectiva influência no regime de evapotranspiração, bem como a uma análise do escoamento turbulento nos domínios do tempo e frequência. O valor médio diário total da razão entre os resultados do fluxo turbulento de calor latente e de evapotranspiração de equilíbrio, foi de 0,44, característico de um coberto florestal seco. O factor de acoplamento médio de 0,18 foi indicativo do predomínio de condições do regime de evaporação imposta, com forte dependência ao défice de pressão de vapor da atmosfera e à resistência de coberto. Os valores de resistência de coberto aumentaram ao longo dos períodos da tarde, com o acréscimo do défice de pressão de vapor, indiciando um encerramento parcial dos estomas para controlo da transpiração. Os espectros das componentes da velocidade e temperatura do ar, aproximaram-se razoavelmente das funções empíricas normais. Os declives das curvas espectrais na subgama inercial, obedeceram à lei de potência de -2/3. Os valores calculados das escalas médias eulerianas integrais de comprimento a partir da função de autocorrelação, adimensionalizados à altura das árvores, foram de 8,65 e 0,69 para as componentes horizontal e vertical da velocidade do vento. Os valores calculados para as escalas médias de tempo correspondentes são de 12 e 0,96 s. A aplicação do método dos quadrantes confirmou a importância dos fenómenos intermitentes de ejecção e rajada no transporte descendente de momento.
Palavras chave: montado; potência espectral; acoplamento; escalas de tempo e comprimento
Abstract. At an observation tower in a cork oak stand, experimental measurements were made of the usual micrometeorological variables and of the turbulent fluctuations of wind velocity components and air temperature, in order to characterize their influence on the evapotranspiration regime and, by inspection of the Penman-Monteith equation, as well as time and frequency domain analysis of turbulent flow. The total mean daily ratio between the latent heat flux and equilibrium evapotranspiration was 0.44, typical of a dry canopy. The mean daily value of the coupling coefficient was 0.18, representative of an imposed evaporation, with a strong dependence on atmospheric humidity and canopy resistance. Canopy resistance increased during the afternoon, with an increasung atmospheric vapor pressure deficit, indicating a partial stomatal closure. The spectra of air temperature and velocity components fitted well with the usual empirical functions. The slopes of spectral curves followed the 2/3 power law in the inertial subrange. The calculated mean integral eulerian length scales, relating to tree heigths, calculated from autocorrelation functions, for the horizontal and vertical velocity components of wind velocity, were 8.65 and 0.69. Their corresponding time scales were 12 and 0.96 s. An application of the quadrant method confirmed the importance of intermittent sweeps and ejections, in the descendent transport of horizontal momentum.
Key words: cork oak stand; power spectra; coupling; time and length scales
Résumé. À partir du mesurage, dans une tour d'observation agronomique, dans un peuplement de chêne-liège, des variables micrométéorologiques usuelles et du régime turbulent de fluctuations des composants de vélocité du vent et température de l'air, on a fait une caractérisation des paramètres d'aérodynamique, et par l'analyse de l'équation Penman-Monteith de la respective influence sur le régime d'évapotranspiration, ainsi qu'une analyse de lécoulement turbulent dans les domaines du temps et de fréquence. La valeur moyenne quotidienne totale de la raison entre les résultats du flux turbulent de chaleur latente et de l'évapotranspiration de bilan a été 0.44, caractéristique d'un peuplement forestier sec. Le facteur de couplage moyen de 0.18 a été indicatif de la prédominance de conditions de régime d'évaporation imposée, ayant une grande dépendance du déficit de pression de vapeur de l'atmosphère et de la résistance du couvert. Les valeurs de résistance du couvert ont augmenté au cours des périodes de l'après-midi, avec l'accroissement du déficit de pression de vapeur, en indiquant une fermeture partielle des stomates pour le contrôle de la transpiration.
Les spectres des composants de la vitesse et température de l'air s'approchent raisonnablement des fonctions empiriques normales. Les déclives des courbes spectrales dans la sous-gamme inertielle ont obéi à la loi de la puissance de -2/3. Les valeurs calculées des échelles moyennes de eulériennes intégrales de longueur à partir de la fonction d'autocorrélation, dimensionnés à la hauteur des arbres ont été de 8.65 et 0.69 pour les composants horizontal et vertical de la vélocité du vent. Les valeurs calculées pour les échelles moyennes de temps correspondantes sont de 12 et 0.96 s. L'application de la méthode des quadrants a confirmé l'importance des phénomènes intermittents d'éjection et de rafale dans le transport descendant de moment.
Mots clés: peuplements de chêne-liège; puissance spectrale; couplage; échelles de temps et longueur
Texto completo disponível apenas em PDF.
Full text only available in PDF format.
Bibliografia
AMIRO, B.D., 1990. Drag Coefficients and Turbulence Spectra Within Three Boreal Forest Canopies. Boundary Layer Meteorology 52 : 227-246. [ Links ]
BLACKADAR, A.K., 1997. Turbulence and Diffusion in the Atmosphere. Springer Verlag. [ Links ]
BALDDOCHI, D.D., 1994. A Comparative Study of Mass and Energy Exchange Over a Close C3 (wheat) and Open C4 (corn) canopy: I. The Partitioning of Available Energy into Latent and Sensible Heat Exchange. Agricultural and Forest Meteorology 67 : 191-220. [ Links ]
BALDDOCHI, D.D., MEYERS, T.P., 1988a. Turbulence Structure in a Deciduous Forest. Boundary Layer Meteorology 43 : 345-364. [ Links ]
BALDDOCHI, D.D., MEYERS, T.P., 1988b. A Spectral and Lag-Correlation Analysis of Turbulence in a Deciduous Forest Canopy. Boundary Layer Meteorology 45 : 31-58. [ Links ]
BALDDOCHI, D.D., VOGEL, A.C., HALL, B., 1997. Seasonal Variation of Energy and Water Vapor Exchange Rates Above and Below a Boreal Jack Pine Forest Canopy. Journal of Geophysical Research 102 : 28939-28951. [ Links ]
BLANKEN, P.D., BLACK, T.A., NEUMANN, H.H., HARTOG, G. DEN, YANG, P.C., NESIC, Z., STAEBLER R., CHEN, W., NOVAK, M.D., 1998. Turbulent Flux Measurements Above and Below the Overstorey of a Boreal Aspen Forest. Boundary Layer Meteorology 89 : 109-140. [ Links ]
CUNHA, F.R., 1977. Meteorologia Geral e Agrícola. Sebenta da Disciplina de Mesologia e Meteorologia Agrícolas, Instituto Superior de Agronomia. [ Links ]
DAMPER, R.I., 1995. Introduction to Discrete-Time Signals and Systems. Chapman & Hall [ Links ]
DeFATTA, D.J., LUCAS, J.L., HODGISS, W.S., 1988. Digital Signal Processing: A System Design Approach. John Wiley & Sons. [ Links ]
GAO, W., SHAW, R.H., U. PAW K.T., 1989. Observation of Organized Structure in Turbulent Flow Within and Above a Forest Canopy. Boundary Layer Meteorology 47 : 349-377. [ Links ]
GREEN, S.R., GRACE, J., HUTCHINGS, N.J., 1995. Observations of turbulent air flow in three stands of widely spaced Stika spruce. Agricultural and Forest Meteorology 74 : 205-225. [ Links ]
JARVIS, P.G., McNAUGHTON, K.J., 1986. Stomatal Control of Transpiration: Scaling up From Leaf to Region. Advances in Ecological Research 15 : 1-48. [ Links ]
KAIMAL, J.C., 1991. Time Series Tapering For Short Data Samples. Boundary Layer Meteorology 57 : 187-194 [ Links ]
KAIMAL, J.C., FINNIGAN, J.J., 1994. Atmospheric Boundary Layer Flows. Their Structure and Measurement. Oxford University Press. [ Links ]
KAIMAL, J.C., WYNGAARD J.C., IZUMI, Y., COTÉ, O.R., 1972. Spectral Characteristics of Surface Layer Turbulence. Quarterly Journal of the Royal Meteorological Society 98 : 563-589. [ Links ]
KRUIJT, B., MALHI, Y., NOBRE, A.D., MIRANDA, A.C., PEREIRA, M.G.P., CULF, A., GRACE, J., 2000. Turbulence Statistics Above and Within Two Amazon Rain Forest Canopies. Boundary Layer Meteorology 94 : 297-331. [ Links ]
LECLERC, M.Y., BEISSNER, K.C., SHAW, R.H., HARTOG, G. DEN, NEUMANN, H.H., 1990. The Influence of Atmospheric Stability on the Budgets of Reynolds Stress and Turbulent Kinetic Energy Within and Above a Deciduous Forest. Journal of Applied Meteorology 29 : 916-933. [ Links ]
LEE, X., 1996. Turbulence Spectra and Eddy Diffusivity Over Forests. Journal of Applied Meteorology 35 : 1307-1318. [ Links ]
LEE, X., BLACK, T.A., 1993a. Atmospheric Turbulence Within and Above a Douglas Fir Stand. Part I: Statistical Properties of the Velocity Field. Boundary Layer Meteorology 64 : 149-174. [ Links ]
LEE, X., BLACK, T.A., 1993b. Atmospheric Turbulence Within and Above a Douglas Fir Stand. Part II: Eddy Fluxes of Sensible Heat and Water Vapour. Boundary Layer Meteorology 64 : 369-389. [ Links ]
LYNN, P.A., FUERST, W., Introductory Signal Processing with Computer Applications. 2nd Edition, John Wiley. [ Links ]
MAITANI, T., 1977. Vertical Transport of Turbulent Kinetic Energy Over a Paddy Field. Boundary Layer Meteorology 12 : 405-423. [ Links ]
MONTEITH, J.L., UNSWORTH, M.H., Principles of Environmental Physics. 2nd. Ed., Edward Arnold. [ Links ]
MOORE, C.J., 1986. Frequency Response Corrections for Eddy Correlation Systems. Boundary Layer Meteorology 37 : 17-35. [ Links ]
RAUPACH, M.R., SHAW, R.H., 1982. Averaging Procedures for Flow Within Vegetation Canopies. Boundary Layer Meteorology 22 : 79-90. [ Links ]
RODRIGUES, A.M., 2002. Fluxos de Momento, Massa e Energia na Camada Limite Atmosférica em Montado de Sobro, Dissertação para a obtenção do Grau de Doutor em Engenharia do Ambiente, Instituto Superior Técnico, Universidade Técnica de Lisboa. [ Links ]
RODRIGUES, A.M., PITA, G.P.A., 2003. Fluxo de Massa e Energia na Camada Limite Atmosférica em Montado de Sobro. Silva Lusitana 11(1) : 31-60. [ Links ]
SHAW, R.H., HARTOG, G. DEN, NEUMANN, H.H., 1988. Influence of Foliar Density and Thermal Stability on Profiles of Reynolds Stress and Turbulence Intensity in a Deciduous Forest. Boundary Layer Meteorology 45 : 391-409. [ Links ]
SHUTTLEWORTTH, W.J., GASH, J.H.C., LLOYD, C.R., MOORE, C., ROBERTS, J., FILHO, A.O.M., FISCH, G., FILHO, V. DE P.S., RIBEIRO, M.N.G., MOLION, L.C.B., SÁ, L.D.A., NOBRE, J.C.A., CABRAL, O.M.R., PATEL, S.R., MORAES J.C., 1984. Eddy Correlation Measurements of Energy Partition for Amazonian Forest. Quaterly Journal of the Royal Meteorological Society 110 : 1143-1162. [ Links ]
STULLl, R.S., 1991. An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers. [ Links ]
TENNEKES, H., LUMLEY, J.L., 1980. A First Course in Turbulence. MIT Press. [ Links ]
VOGT, R., JAEGER, L., 1990. Evaporation From a Pine Forest-Using the Aerodynamic Method and Bowen Ratio Method. Agriculture and Forest Meteorology 50 : 39-54. [ Links ]
WYNGAARD, J.C., COTÉ, O.R., 1971. The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer. Journal of the Atmospheric Science 28 : 190-201. [ Links ]
WYNGAARD, J.C., COTÉ, O.R., IZUMI, Y., 1971. Local Free Convection, Similarity, and the Budgets of Shear Stress and Heat Flux. Journal of the Atmospheric Sciences 28 : 1171-1182. [ Links ]
VERMA, V.V., BALDOCCHI, D.D., ANDERSON, D.A., MATT, D.R., CLEMENT, R.J., 1986. Eddy Fluxes of CO2, Water Vapour and Sensible Heat Over a Deciduous Forest. Boundary Layer Meteorology 36 : 71-91. [ Links ]
Entregue para publicação em Setembro de 2003
Aceite para publicação em Outubro de 2003
11º Autor E-mail: abel.rodrigues@efn.com.pt