Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Ciência & Tecnologia dos Materiais
versão impressa ISSN 0870-8312
C.Tecn. Mat. v.20 n.1-2 Lisboa jan. 2008
Micro-and macro-analysis of the fatigue crack growth in pearlitic steels
Jesús Toribio, Beatriz González, Juan-Carlos Matos
University of Salamanca, Department of Materials Engineering, E.P.S., Campus Viriato, Avda. Requejo 33, 49022 Zamora, Spain.
ABSTRACT: This paper deals with the influence of the manufacturing process on the fatigue behaviour of pearlitic steels with different degrees of cold drawing. The analysis is focussed on the region II (Paris) of the fatigue behaviour in which da/dN=C (∆K)m, measuring the constants (C and m) for the different degrees of drawing. From the engineering point of view, the manufacturing process by cold drawing improves the fatigue behaviour of the steels, since the fatigue crack growth rate decreases as the strain hardening level in the material increases. In particular, the coefficient m (slope of the Paris laws) remains almost constant and independent of the drawing degree, whereas the constant C decreases as the drawing degree rises. The paper focuses on the relationship between the pearlitic microstructure of the steels (progressively oriented as a consequence of the manufacturing process by cold drawing) and the macroscopic fatigue behaviour. It is seen that the fatigue crack growth path presents certain roughness at the microscopic level, such a roughness being related to the pearlitic colony boundaries more than to the ferrite/cementite lamellae interfaces.
Keywords: Pearlitic Steel, High Strength Steel, Fatigue Microdamage, Paris Law.
RESUMO: Este artigo trata da influencia do processo de fabricaçao no comportamento da fatiga de aços perliticos com graus diferentes de trefilado. A análise é centrada na região II (Paris) do comportamento da fatiga na que da/dN=C(∆K)m, medindo as constantes (C e m) para os diferentes graus do proceso de fabricaçao. Desde o ponto da vista da engenharia, o processo de fabricaçao polo desenho en frio melhora o comportamento da fatiga dos aços, dende que a taxa de crescimento da fissura da fatiga diminui enquanto aumenta o nível de endurescemento por deformaçao do material. No detalhe, o coeficiente m (inclinação das leis de Paris) permanesce quase constante e independente do grau de trefilado, mentras que a constante C diminui enquanto o grau de trefilado se levanta. O artigo focalizase no relacionamento entre a microstructura perlitica dos aços (orientados progressivamente em consequência do processo de fabricaçao pelo desenho en frio) e o comportamento macroscópico da fatiga. Vê-se que o trajeto do crescimento da fissura da fatiga apresenta determinada aspereza no nível microscópico, tal aspereza está sendo relacionada aos limites da colônia perlítica mais do que puideran influir as intercaras das lamellas de ferrita/cementita.
Palavras chave: Aço Perlitico, Aço de alta ressistença, Microdano por Fatiga, Lei De Paris.
Texto completo disponível apenas em PDF.
Full text only available in PDF format.
REFERENCES
[1] G.T. Gray III, A.W. Thompson and J.C. Williams, Metall. Trans. 16A (1985) 753. [ Links ]
[2] S. Sankaran, V. Subramanya Sarma, K.A. Padmanabhan, G. Jaeger and A. Koethe, Mater. Sci. Eng. A 362 (2003) 249.
[3] K.S. Ravichandran, Acta Metall. Mater. 39 (1991) 1331.
[4] A.B. El-Shabasy and J.J. Lewandowski, Int. J. Fatigue 26 (2004) 305.
[5] J. Llorca and V. Sánchez-Gálvez, Eng. Fracture Mech. 26 (1987) 869.
[6] V. Subramanya Sarma, K.A. Padmanabhan, G. Jaeger, A. Koethe and M. Schaper, Mater. Letters 46 (2000) 185.
[7] J. Toribio and M. Toledano, Proceedings of the Seventh International Fatigue Congress, 1999, Beijing, China.
[8] A.A. Korda, Y. Mutoh, Y. Miyashita and T. Sadasue, Mater. Sci. Eng. A 428 (2006) 262.
[9] A.A. Korda, Y. Mutoh, Y. Miyashita, T. Sadasue and S.L. Mannan, Scripta Mater. 54 (2006) 1835.
[10] J. Toribio and E. Ovejero, Mater. Sci. Eng. A 234-236 (1997) 579.
[11] J. Toribio and E. Ovejero, Mater. Sci. Lett. 17 (1998) 1037.
[12] J. Toribio and E. Ovejero, Scripta Mater. 39 (1998) 323.
[13] J. Toribio and E. Ovejero, Mech. Time-Dependent Mater. 1 (1998) 307.
[14] J. Toribio, E. Ovejero and M. Toledano, Int. J. Fracture 87 (1997) L83.
[15] J. Toribio, B. González, J.C. Matos and F.J. Ayaso, Key Eng. Mater. 348-349 (2007) 681.
[16] P.C. Paris and F. Erdogan, J. Basic Eng. 85D (1963) 528.
[17] M.A. Astiz, Int. J. Fracture 31 (1986) 105.
[18] J. Toribio, B. González and J.C. Matos, Mater. Sci. Eng. A 468-470 (2007) 267.
[19] A.K. Vasudevan, K. Sadananda and G. Glinka, Int. J. Fatigue 23 (2001) S39.
[20] M. Toyosada, T. Niwa and J. Sakai, Int. J. Fatigue 19 (1997) S161.
[21] C.Q. Cai and C.S. Shin, Int. J. Fatigue 27 (2005) 801.
[22] L.E. Miller and G.C. Smith, J. Iron Steel Inst. 208 (1970) 998.
[23] J. Toribio and V. Kharin, Role of fatigue crack closure stresses in hydrogen assisted cracking, Advances in Fatigue Crack Closure Measurement and Analysis, PA, ASTM STP 1343, American Society for Testing and Materials, 1999.
[24] Y. Sugimura, L. Grondin and S. Suresh, Scripta Metall. Mater. 33 (1995) 2007.
[25] F. Wetscher, R. Stock and R. Pippan, Mater. Sci. Eng. A 445-446 (2007) 237.