Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Ciência & Tecnologia dos Materiais
versão impressa ISSN 0870-8312
C.Tecn. Mat. v.20 n.1-2 Lisboa jan. 2008
Effect of relative displacement and normal contact load on fretting fatigue behaviour of ti6al4v alloy
M. Buciumeanu, A.S Miranda, F.S. Silva
*Department of Mechanical Engineering,University of Minho, Azurém, 4800-058 Guimarães, Portugal. fsamuel@dem.uminho.pt
ABSTRACT: The main objective of this work is to study the fretting fatigue behaviour of Ti6Al4V in contact with a dissimilar mating material 34CrNiMo6 steel, using a sphere-on-plane configuration. There are a significant number of parameters that may affect fretting fatigue. Relative displacement amplitude and normal contact load are usually considered the most relevant ones. Thus, the role of relative displacement amplitude and normal load on fretting fatigue, life is presented. When the Ti6Al4V alloy is subjected to fretting fatigue the fatigue life drastically reduces as compared to the traditional plain fatigue case. In order to study this detrimental effect of fatigue life tests of both plain fatigue and fretting fatigue were carried out, highlighting the synergic effect between fatigue and fretting. Three different normal loads were used in the experiments. The relative displacement amplitude was changed by varying the tangential load. The fretting fatigue experiments were carried out in a fretting fatigue apparatus assembled on a servo hydraulic fatigue testing machine. In addition to the experimental work a nonlinear analysis using ABAQUS was carried out to determine the influence of the normal load on fretting fatigue behaviour.
It was verified the strong dependence of fretting fatigue life on the two studied variables, namely the relative displacement amplitude and the normal contact load.
Keywords: fatigue, fretting fatigue, relative displacement amplitude, normal contact load.
RESUMO: O principal objectivo deste trabalho é o estudo do comportamento da fadiga com fretting da liga de Ti6Al4V em contacto com uma liga de aço 34CrNiMo6, utilizando a configuração esfera - plano. Há um número significativo de parâmetros que podem afectar a vida de fadiga com fretting. A amplitude de deslocamento relativo e a carga normal do contacto são considerados parâmetros mais relevantes.
Quando a liga de Ti6Al4V é submetida a fadiga com fretting a vida da fadiga reduz drasticamente em comparação com o caso de fadiga tradicional. O objectivo deste estudo foi observar o efeito negativo do fretting na vida de fadiga e para isso foram realizados testes tradicionais de fadiga e testes de fadiga com fretting. Há que realçar os efeitos sinergéticos entre a fadiga e o fretting.
Além do trabalho experimental foi realizada uma análise não linear com Abaqus para determinar a influencia da carga normal no comportamento da fadiga com fretting.
Foi verificada a forte dependência da vida de fadiga com fretting com as duas variáveis estudadas, nomeadamente a amplitude de deslocamento relativo e a carga normal de contacto.
Palavras chave: fadiga, fadiga com fretting, amplitude de deslocamento relativo, carga normal do contacto.
Texto completo disponível apenas em PDF.
Full text only available in PDF format.
REFERENCES
[1] R. Magaziner, O. Jinb, S. Mall, Wear 257 (2004) 190-197. [ Links ]
[2] S. Shinde, D. W. Hoeppner, Tribology International 39 (2006) 10281035.
[3] O. Jin, S. Mall, Wear 256 (2004) 671684.
[4] A. A. Hamid, Bull: mater. Sci. 26, No. 7, (2003), pp. 749-754;
[5] B.P. Conner, A.L. Hutson, L. Chambon, Wear 255 (2003) 259268.
[6] N.K. Ramakrishna Naidu, International Journal of Fatigue 27 (2005) 283291.
[7] O. Jin, S. Mall, Wear 253 (2002) 585596.
[8] O. Vingsbo, S. Soderberg, Wear 126 (1988) 131147.
[9] S. Fouvry, P. Kapsa, L. Vincent, Wear 200 (1996) 186-205.
[10] T.E. Matikas, P.D. Nicolaou, J. Mater. Res. 16 9 (2001), pp. 27162723.
[11] H. Lee, S. Mall, Tribology International 39 (2006) 12131219.
[12] K. Sato, Wear 125 (1988) 163-174.
[13] H. Lee, S. Mall, S. Sathish, Materials Science and Engineering A 390 (2005) 227232.
[14] J.M. Ambrico and M.R. Begley, J Mech Phys Solids 48 11 (2000), pp. 23912417.
[15] V. Sabelkin, S. Mall, Fatigue & fracture of engineering materials and structures 28, (2005) 809-824.
[16] H. Proudhon, S. Fouvry, G.R. Yantio, International Journal of Fatigue 28 (2006) 707713.
[17] A. Ramalho, L.M. Correia, J.D. Costa, Tribology International 33 (2000) 761768.
[18] K. Nakazawa , N. Maruyama, T. Hanawa, Tribology International 36 (2003) 7985
[19] M. Buciumeanu, A.S Miranda, F.S. Silva, XXIII Encuentro del Grupo Espańol de Fractura, Albarracín, Spain, March 29-31, 2006.
[20] ABAQUS standard users manual. Hibbit, Karlsson and Sorensen Inc.; 2004.
[21] M. Buciumeanu, A.S Miranda, F.S. Silva, The 1st International Conference on Diagnosis and Prediction in Mechanical Engineering Systems, 26-27 October 2007 Galati, Romania.
[22] D. Nowell, D. Dini, Tribology International 36 (2003) 71-78.
[23] K. Iyer, S. Mall, Fatigue Fract. Eng. Mater. Struct. 23 (2000) 335-346.
[24] J. Takeda, M. Niinomi, T. Akahori, Gunawarman, International Journal of Fatigue 26 (2004) 10031015.
[25] C. Lindley, Journal of fatigue 19 (1997), 39-49.