SciELO - Scientific Electronic Library Online

 
vol.30 número2Mineralização de azoto de diferentes resíduos orgânicos em incubação laboratorial de longa duraçãoTolerância ao sal e às altas temperaturas de estirpes de Sinorhizobium provenientes de zonas secas do Alentejo índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista de Ciências Agrárias

versão impressa ISSN 0871-018X

Rev. de Ciências Agrárias v.30 n.2 Lisboa jul. 2007

 

Influência do posicionamento no solo na decomposição de folhas e raminhos de Cistus salviifolius L.

Influence of soil placement on decomposition of leaves and stems of Cistus salviifolius L.

M. P. Simões1, J. Nunes1, L. Gazarini1 & M. Madeira2

 

RESUMO

Estudou-se a influência do posicionamento no solo na dinâmica da decomposição de resíduos de arbustos mediterrânicos, numa comunidade característica de montados do Alentejo, durante um período de cerca de 2 anos. Para o efeito, monitorizaram-se as variações de matéria orgânica e de nutrientes em folhas e raminhos de Cistus salviifolius L. colocados na superfície do solo e incorporados a 10 cm de profundidade, através da técnica dos “sacos de decomposição” A taxa anual decomposição das folhas na superfície do solo (-0,71) foi mais rápida do que a dos raminhos em posição homóloga (-0,17). Esta diferenciação foi também observada para as folhas e raminhos incorporados a 10 cm de profundidade, tendo a taxa sido bastante mais elevada (respectivamente -0,98 e -0,43). A diminuição da matéria orgânica ocorreu em duas fases: uma fase inicial de decréscimo bastante rápido, influenciado principal-mente pela natureza do substrato, à qual se seguiu uma fase de decréscimo muito lento, no qual se fez sentir tanto o efeito do substrato como o da sua localização. A libertação dos nutrientes foi mais influenciada pela composição inicial dos resíduos do que pela localização destes no solo, tendo a libertação sido mais rápida nas folhas do que nos raminhos. As relações lineares inversas observadas entre a MO remanescente e a concentração de N no material residual indicam maiores períodos de imobilização de N nas folhas colocadas na superfície do que nas incorporadas no solo.

 

ABSTRACT

The influence of placement on litter decomposition dynamics was studied in the Mediterranean shrub Cistus salviifolius L. Litter bags containing either leaf or branch were placed at soil surface and others buried at 10 cm depth, in a Mediterranean shrubland of Alentejo, Southern Portugal. Changes in organic matter and nutrient content were assessed over a 2-year period. Decomposition was faster for leaves than for branches, as well as for buried residues than for those placed on soil surface. The annual decomposition rates, k, at surface were -0.71 for leaf and -0.17 for branches, while for buried litter they were -0.98 and -0.43, respectively. Organic matter decrease showed two phases: one initial decomposition phase of fast loss, mainly influenced by litter quality, followed by a very slow phase, influenced by both litter quality and placement. Nutrient dynamics was more influenced by litter initial chemical composition than by its placement, and the release was faster in the residues with the highest initial content, the leaves. The linear inverse relations, determined between remaining OM and N concentration in the remaining material, indicate longer N retention periods in the surface leaves than in buried ones.

 

 

Texto completo disponível apenas em PDF.

Full text only available in PDF format.

 

 

REFERÊNCIAS BIBLIOGRÁFICAS

Aber, J.D. & Melillo, J.M. 1982. Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Canadian Journal of Botany, 60: 2263-2269.         [ Links ]

Aber, J.D., Melillo, J.M. & McClaugherty, C. 1990. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany, 68: 2201-2208.

Aguiar, F.B. & Grilo, J.T. 1975. Carta de solos da Herdade da Mitra. Universidade de Évora, Évora (mimeografado).

Magill, A.H. & Aber, J.D. 2000. Variation in soil net mineralization rates with dissolved organic carbon additions. Soil Biology and Biochemistry, 32: 597-601.

Blair, J.M. 1988. Nitrogen, sulfur and phosphorus dynamics in decomposing deciduous leaf litter in the southern Appalachians. Soil Biol. Biochem., 20: 693-701.

Bocock, K.L. & Gilbert, O.J.W. 1957. The disappearance of leaf litter under different woodland conditions. Plant and Soil, 9: 179-185.

Bocock, K.L., Gilbert, O., Capstick, C.K., Twinn, D.C., Waid, J.S. & Woodman, M.J. 1960. Changes in leaf litter when placed on the surface of soils with contrasting humus types. I. Losses in dry weight of oak and ash leaf litter. Journal of Soil Science, 11: 1-9.

Bremner, J.M. & Mulvaney, C.S. 1982. Nitrogen – total. In A.L. Page, R. H. Miller & D. R. Keeney (eds) Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, Agronomy Monograph nº 9 (2nd ed.), pp. 595-624. American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin.

Conn, C. & Dighton, J. 2000. Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biol. Biochem., 32: 489-496.

Cortez, J. 1998. Field decomposition of leaf litters: relationships between decomposition rates and soil moisture, soil temperature and earthworm activity. Soil Biol. Biochem., 30: 783-793.

Gallardo, A. 2000. Descomposición de hojarasca en ecosistemas mediterráneos. In Rodriguez, R.Z. & Iraola, F.I.P. (eds) Ecosistemas Mediterráneos. Análisis Funcional, Textos Universitarios nº 32, pp. 95-122. CSIC, Espanha.

Gallardo, A. & Merino, J. 1993. Leaf decomposition in two mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology, 74: 152-161.

Gallardo, A. & Pino, J. 1988. Importancia del medio fisico en la descomposicion de la hoja de especies arboreas. Lagascalia, 15 (Extra): 541-547.

Gosz, J.R., Likens, G.E. & Bormann, F.H. 1973. Nutrient release from decomposing leaf and branch litter in the Hubbard Brook Forest, New Hampshire. Ecological Monographs, 43: 173-191.

Hendrix, P.F., Crossley, D.A., Coleman, D.C., Parmelee, R.W. & Beare, M.H. 1987. Carbon dynamics in soil microbes and fauna in conventional and no-tillage agroecosystems. Intecol Bulletin, 15: 59-63.

Hendrix, P.F., Parmelee, R.W., Crossley, D.A., Coleman, D.C., Odum, E.P. & Groffman, P.M. 1986. Detritus food webs in conventional and no-tillage agroecosystems. BioScience, 36: 374-380.

Hobbie, S. 1996. Litter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology, 68: 425-433.

Holland, E.A. & Coleman, D.C. 1987. Temperature and plant species control over litter decomposition in alaskan tundra. Ecological Monographs, 66: 503-522.

McClaugherty, C.A., Pastor, J., Aber, J.D. & Melillo, J.M. 1985. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology, 66: 266-275.

McInerney, M. & Bolger, T. 2000. Decomposition of Quercus petraea litter: influence of burial, comminution and earthworms. Soil Biol. Biochem., 32: 1989-2000.

Melillo, J.M., Aber, J.D. & Muratore, J.F. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63: 621-626.

Murphy, J. & Riley, J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31-36.

Musvoto, C., Campbell, B.M. & Kirchmann, H. 2000. Decomposition and nutrient release from mango and miombo woodland litter in Zimbabwe. Soil Biol. Biochem., 32: 1111-1119.

Olson, J.S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44: 322-331.

Rovira, P. & Vallejo, V.R. 1997. Organic carbon and nitrogen mineralization under mediterranean climatic conditions: the effects of incubation depth. Soil Biol. Biochem., 29: 1509-1520.

Rovira, P. & Vallejo, V.R. 2000. Decomposition of Medicago sativa debris incubated at different depths under mediterranean climate. Arid Soil Research and Rehabilitation., 14: 265-280.

Rovira, P. & Vallejo, V.R. 2002. Mineralization of carbon and nitrogen from plant debris, as affected by debris size and depth of burial. Soil Biol. Biochem., 34: 327-339.

Simões, M.P., Madeira, M. & Gazarini, L. 2002. Dinâmica da decomposição e da libertação de nutrientes da folhada de Cistus salvifolius L. e Cistus ladanifer L. Revista de Ciências Agrárias, 3-4: 508-520.

Wardle, D.A., Yeates, G.W., Nicholson, K.S., Bonner, K.I. & Watson, R.N. 1999. Response of soil microbial biomass dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period. Soil Biol. Biochem., 31: 1707-1720.

Watanabe, F.S. & Olsen, S.R. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Society of America Proceedings, 29: 677-678.

Zeller, V., Bardgett, R.D. & Tappeiner, U. 2001. Site and management effects on soil microbial properties of subalpine meadows: a study of land abandonment along a north-south gradient in the European Alps. Soil Biology & Biochemistry 33: 639-649.

Zeller, B., Colin-Belgrand, M., Dambrine, E., Martin, F. & Bottner, P. 2000. Decomposition of 15N-labelled beech litter and fate of nitrogen derived from litter in a beech forest. Oecologia., 123: 550-559.

 

1 Dep. de Biologia/ICAM, Universidade de Évora, Apartado 94, 7002-554 Évora, e-mail: mps@uevora.pt

2 Dep. de Ciências do Ambiente, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons