INTRODUÇÃO
A amendoeira [Prunus dulcis M. (D.A Webb) syn. Prunus amygdalus Batsch] pertence à família Rosacea e ao sub-género Amygdalus (L.) (Ribeiro e Silva, 2020). É originária das regiões quentes e áridas do sudoeste asiático e das encostas montanhosas mais baixas da Ásia central (Benmoussa et al., 2017). De acordo com os dados sobre alimentação e agricultura (FAOSTAT, 2022), em 2020, 4 milhões toneladas de amêndoa (com casca) foram produzidas, no mundo inteiro. A amendoeira é uma das espécies mais representativas da economia mundial, sendo produzida em vários pontos do planeta, com destaque para os continentes: América (2 milhões t), Ásia (648×103 t) e Europa (561×103 t). Na Europa, a região do Mediterrâneo, é caraterizada por apresentar condições climáticas favoráveis para o desenvolvimento da espécie. Portugal continental, tem revelado um crescimento na produção de amêndoa nos últimos anos, com uma área correspondente de 52×103 ha e uma produção de 32×103 t, em 2020 (FAOSTAT, 2022).
Em Portugal, as condições edafoclimáticas, as práticas de cultivo, e as variedades de amendoeira utilizadas definem a individualidade de cada região agrícola (Ribeiro e Silva, 2020). Como referência, região de Trás-os-Montes, situada a nordeste de Portugal, exibe uma longa tradição no cultivo da espécie amendoeira, com relevância para a preservação da rusticidade das variedades autóctones e das práticas agrícolas (Santos e Teixeira, 2020). As variedades autóctones que definem a região são “José Dias”, “Duro da Estrada Grado”, “Duro Amarelo Grado” e “Casa Nova”, entre outras (Oliveira et al., 2018; Santos e Teixeira, 2020). Além disso, as condições climáticas e a disponibilidade de água caraterizam a região com invernos frios e chuvosos e verões quentes e secos (Ribeiro e Silva, 2020), favoráveis ao cultivo do amendoal.
Efetivamente, o clima é um fator determinante para o desenvolvimento de qualquer espécie vegetal, e como tem vindo a ser referido, as alterações climáticas têm afetado cada vez mais as culturas agrícolas (Palanivel e Surianarayanan, 2019). As geadas e as chuvas de primavera, bem como, o aumento da temperatura e a redução da precipitação têm contribuído para o aumento dos riscos associados à sustentabilidade do amendoal (Doll et al., 2021). Como consequência, a produção é afetada negativamente, e por isso, os produtores e a comunidade científica têm procurado soluções para antever e reduzir os efeitos das alterações climáticas sobre a cultura (Freitas et al., 2021). Desta forma, o recurso a machine learning tem sido uma opção para determinar estes impactes. Entre as aplicações de machine learning, os métodos de regressão, como o stepwise, são empregues na agricultura para desenvolver modelos de previsão de: produção, períodos de floração e colheita, e ocorrência de doenças (Fraga et al., 2016; Mishra et al., 2016; Ansarifar et al., 2021; Liu et al., 2021; Ali et al., 2022).
Assim, com o intuito de prever a produção da amendoeira para a região de Trás-os-Montes, em condições futuras, recorreu-se ao método matemático stepwise (forwards & backwards). Em Portugal, estudos que recorrem à previsão da produção da amendoeira são incipientes, e consideram-se de elevada importância para a viabilidade dos amendoais e da economia do país, no futuro. Além disso, este estudo pode ser extrapolado para outras regiões do planeta, que apresentem caraterísticas semelhantes às da região em estudo. Os objetivos deste estudo são: (1) descrever a região de estudo; (2) determinar as variáveis climáticas que influenciam a produção da amendoeira; (3) determinar o modelo que melhor descreve a produção; (3) aplicar o modelo em condições futuras.
MATERIAL E MÉTODOS
Descrição da área de estudo
A região de Trás-os-Montes, situada a noroeste de Portugal, é composta por zonas agrícolas: Alto Tâmega-Barroso, Marão-Padrela, Terra Fria, Planalto Mirandês, e Terra Quente, que apresentam caraterísticas edafoclimáticas diferenciadas, e que por consequência, permitem o desenvolvimento de culturas com necessidades distintas e com práticas agrícolas diferenciadas (Lima, 1999). A amendoeira é uma das espécies que se destaca na região. Desde 1986 até 2021, a variabilidade da área e de produção de amêndoa têm sido observáveis na região agrária de Trás-os-Montes. Em 2021, produziu-se cerca de 17 × 103 t (Figura 1c), para uma área de 26 225 ha (INE, 2022). Na região ainda se encontram variedades autóctones e a sua produção é tradicionalmente de sequeiro (Ribeiro e Silva, 2020; Doll et al., 2021). No presente estudo, a caracterização da distribuição do amendoal enquadra-se no inventário digital fornecido pelo Instituto Geográfico de Portugal (Carta de Uso e Ocupação do Solo de Portugal Continental-COS 2007) (Fonte: Direção-Geral do Território, http://www.dgterritorio.pt/ (acedido em 24 de fevereiro de 2022)). Áreas com a designação "Pomares de amendoeira", "Pomares de amendoeira com vinha" e "Pomares de amendoeira com olival" foram selecionadas como fonte de dados.
Método de stepwise
A recorrência a técnicas de machine learning para previsão da produção da amendoeira é cada vez mais frequente (Beigi et al., 2022). As previsões provenientes de machine learning são desenvolvidas a partir de dados externos à planta, que não dependem de mecanismos fisiológicos específicos da cultura (i.e., variáveis climáticas, dados de produção) (Zhang et al., 2019). Utilizou-se o método de stepwise, que consiste na aplicação da metodologia de regressão linear múltipla para variáveis independentes/explicativas que possam descrever a variável dependente/observada (Ansarifar et al., 2021; StatisticsSolutions, n.d.). Assim, como variáveis explicativas utilizaram-se parâmetros de clima: temperatura média (°C); soma da precipitação (mm); humidade relativa (%); amplitude térmica e radiação (W/m2), e produção do ano anterior (t), para o período de 1986 a 2020. Relativamente às variáveis climáticas, os valores bissemanais introduzidos correspondem ao período de janeiro a maio. Este período corresponde à ocorrência da diferenciação floral, estados de floração, vingamento e desenvolvimento do fruto. Submeteram-se 41 variáveis independentes para 35 anos. A variável dependente é a produção (t) anual disponibilizada pelo Instituto Nacional de Estatística (INE, 2022), desde 1986 a 2020. Na aplicação do método, devido ao grande número de potenciais preditores, foi realizada uma regressão multivariada por etapas (fowards e backwards) para a seleção das quatro variáveis mais representativas do modelo (Fraga et al., 2016; Liu et al., 2021). Ainda, foi aplicado um esquema de validação cruzada de leave-one-out para contabilizar o sobre ajustamento do modelo (Fraga et al., 2016). Com base nos preditores selecionados pela metodologia, adaptou-se um modelo linear. Para a validação do modelo foram determinados o coeficiente de determinação (R2 e R2 ajustado) e a Raiz Quadrada do Erro Médio (RMSE) (Ali et al., 2022). Posteriormente, aplicou-se o modelo obtido às condições climáticas futuras.
Variáveis meteorológicas e projeção climática futura
Para se obter os valores das variáveis climáticas estabelecidas recorreu-se a bases de dados de clima. Consideraram-se dois períodos: histórico (E-OBS; 1986-2005) e futuro (EURO-CORDEX; 2021-2080). E-OBS, versão 24.0e, é uma base de dados de clima, que incorpora um vasto número de estações meteorológicas Europeias (Santos et al., 2017). Os dados diários estão disponíveis numa grelha de 0,25° de latitude × 0,25° de longitude (~25 km de espaçamento da grelha). Para a base de dados do futuro, proveniente do projeto EURO-CORDEX (0,11° latitude × 0,11° longitude grelha regular, ∼12,5 km de resolução espacial), utilizou-se o modelo CNRM-CERFACS-CNRM-CM5 - RCA4 (Modelo Climático Global - Modelo Climático Regional) (Freitas et al., 2022). Considerou-se, para o futuro, o cenário RCP4.5 (Representative Concentration Pathway 4.5), que considera um aumento de temperatura até aproximadamente 2 °C. Este cenário, especifica um forçamento radiativo de 4,5 W/m2 com estabilização após meados do seculo XXI (Thomson et al., 2011; Barredo et al., 2017). Para os dois períodos consideram-se as variáveis climáticas indicadas anteriormente: temperatura média, soma da precipitação, humidade relativa, amplitude térmica e radiação. Utilizou-se a base de dados histórica para calibrar as variáveis do modelo climático com o método de "Mapeamento Empírico de Quantidades" (Cofiño et al., 2018). Para tal, foi necessário colocar as duas bases de dados à mesma resolução, através de uma interpolação bilinear. Esta metodologia assegura que o viés entre o valor observado e o simulado seja corretamente ajustado (Fraga et al., 2020a). Os dados históricos foram aplicados no método stepwise para determinação do modelo de previsão da produção. Depois do modelo estar determinado, aplicaram-se os dados do futuro para avaliar a evolução da produção do amendoal.
RESULTADOS E DISCUSSÃO
Área de estudo
O clima na região de Trás-os-Montes é subatlântico/continental e mediterrânico (Lima 1999). Geralmente, os invernos são frios e chuvosos, por contraste os verões são quentes e secos (Ribeiro e Silva, 2020). Para a região esperam-se alterações climáticas como o aumento da temperatura, aumento do risco de geadas até maio, e chuvas na primavera e no início do outono (Doll et al., 2021; Freitas et al., 2021). De acordo com a Figura 1a, em Trás-os-Montes a elevação varia de 250 a 1250 m. No total, 23 % da área corresponde à classe de elevação 251-500 m, 44 % corresponde a 501-750 m, 24 % corresponde a 751-1000 m e 4 % corresponde a < 250 m e 1001-1250 m. Maioritariamente, o amendoal encontra-se nos distritos de Bragança e Viseu, mais especificamente na Zona Agrícola da Terra Quente (Figura 1b). A produção de amêndoa, tem revelado uma variação acentuada desde 1986 até 1997. A partir deste ano, observou-se uma diminuição da produção até 2013, segundo o Instituto Nacional de Estatística (INE, 2022). Sugere-se que esta diminuição esteja associada ao desenvolvimento da produção na Califórnia, que até aos dias de hoje, é um dos maiores produtores de amêndoa. Deste 2016, a tendência foi aumentar a produção até 2021, atingindo aproximadamente 17 × 103 t (Figura 1c).
A área de produção de amêndoa também tem apresentado alguma alternância durante o período histórico, com valores a variar entre 17 310 até 26 225 ha. No entanto, no estudo foi apenas considerada a evolução da produção (t). Trás-os-Montes é uma região tradicional no cultivo da amendoeira, que tem como caraterísticas a preservação das variedades mais rústicas e a prática de sequeiro (Ribeiro e Silva, 2020). Estas condições de cultivo poderão ser ou não vantajosas no futuro. Como se tem vindo a verificar noutros locais como o Algarve, os impactes da reduzida precipitação têm sido minimizados com a implementação de sistemas de rega, e com a implementação de variedades mais resistentes às temperaturas altas de inverno e às geadas tardias na primavera (Doll et al., 2021).
Modelo de produção
A recorrência a ferramentas de previsão da produção das culturas é cada vez mais frequente, uma vez que, são um utensílio indispensável nos dias de hoje, devido ao aumento da incidência de alterações climáticas, às necessidades de consumo da população e às transformações da economia mundial (Freitas et al., 2021). De acordo com os resultados: o método de stepwise (fowards e backwards) selecionou as 4 variáveis independentes, precipitação na 2ª quinzena de maio (A), radiação da 1ª quinzena de janeiro (B), radiação da 1ª quinzena de maio (C) e produção do ano anterior (D), que mais influencia têm na produção, obtendo um modelo que explica 75 % da variância da série de produção de amêndoa regional (R2 = 0,75), com um R2ajustado de 0,718 (Figura 2). Quanto maior o coeficiente de determinação (R2), melhor o modelo consegue explicar a produção (Ali et al., 2022). A Raiz Quadrada do Erro Médio (RMSE) explica o quão longe estão os valores previstos, em média, dos valores observados (Liu et al., 2021). Neste estudo, o RMSE é de 30.
Para a variável precipitação na 2ª quinzena de maio o p-value foi de 0,0290, na radiação da 1ª quinzena de janeiro p-value=0,0069, na radiação da 1ª quinzena de maio p-value=0,0177 e na produção do ano anterior p-value=6,46e-08, com correlações positivas. A produção (t) com as variáveis independentes e a variável Z, que corresponde ao valor da produção do conjunto de entrada, são representadas na seguinte equação:
De acordo com a Figura 3, no período histórico (1986-2020), a variável: precipitação na 2ª quinzena de maio variou entre a 1,2 a 3,1 mm. Em relação à radiação da 1ª quinzena de janeiro os valores alteram entre 59 e 70 W/m2. E os da radiação da 1ª quinzena de maio variam entre 227 e 252 W/m2. A seleção destas variáveis, para além de ser fundamentada pelo modelo matemático, também pode ser justificada em termos fisiológicos da planta. Com efeito, as variáveis enquadram-se com os estados fisiológicos da planta, em especial com o período de crescimento vegetativo, em que a precipitação e a radiação são um suporte de crescimento e contribuem para uma maior atividade da planta (Ribeiro e Silva, 2020; Doll et al., 2021). A variável com maior influência é a produção do ano anterior (n), que afeta a produção do ano seguinte (n+1), uma vez que, durante o ano n ocorre o processo de diferenciação floral para o ano n+1.
Aplicação do modelo de produção no futuro
As variáveis climáticas, selecionadas pelo modelo, apresentam alterações significativas no futuro (2021-2080). De acordo com a figura 3, os valores da precipitação observados na 2ª quinzena de maio são de 0,6 a 1,7 mm. A radiação da 1ª quinzena de janeiro é de 63 a 75 W/m2 e a radiação da 1ªquinzena de maio é de 253 a 272 W/m2. De acordo com as diferenças determinadas, os valores de precipitação tendem a diminuir no futuro, com uma diferença entre -2 a 0,5 mm. Pelo contrário, a radiação tende a aumentar, para a 1ª quinzena de janeiro a diferença corresponde a -5 a 15 W/m2 e para a 1ª quinzena de maio é de 10 a 35 W/m2.
De acordo com a Figura 4, a maior variância observada corresponde ao primeiro período do histórico (1991-2005), associada à diminuição acentuada da produção. Quando aplicado o modelo no futuro (2021 a 2080; RCP4.5), verificou-se que a produção da amendoeira irá ter um aumento em relação ao último período histórico, acompanhada por um aumento da variabilidade. Para as projeções, a variabilidade interanula é visível ao longo do futuro e poderá estar associada à instabilidade do clima e às alterações climáticas. As projeções até 2080 mostram que os valores de produtividade irão estar na ordem do primeiro período histórico.
De acordo com Ansarifar et al. (2021), este método apresenta uma precisão relativamente elevada, no entanto, devido à natureza de caixa negra destes modelos, a precisão da previsão é sensível à estrutura do modelo e à calibração dos parâmetros, e pode ser difícil explicar por que razão as previsões são precisas ou imprecisas. No entanto, no presente estudo, as 4 variáveis selecionadas pelo modelo, são importantes para o desenvolvimento da amendoeira, o que é relevante nestes estudos em que os modelos são de caráter essencialmente matemático (Aguiar et al., 2017; Zhang et al., 2019).
Estes resultados são uma ferramenta importante para o produtor, associações agrícolas e para os gestores do setor. A recorrência a estes resultados poderá ser um auxílio para prever os impactes das alterações climáticas, bem como definir as medidas de adaptação mais indicadas a cada situação (Fraga et al., 2020b; Freitas et al., 2021).
No entanto, novos estudos devem ser realizados para suplementar os resultados obtidos, com a introdução de outras variáveis independentes como: práticas de cultivo, sistemas de rega, caraterísticas orográficas e índices bioclimáticos (Mishra et al., 2016). Também, pode ser extrapolado para outras regiões, como o Algarve. Ainda, o estudo pode ser complementado com recurso a outros modelos/métodos de análise estatística (Zhang et al., 2019; Jin et al., 2020). Outros estudos, para determinar o impacte das alterações climáticas na amendoeira podem ser realizados, como determinar as porções de frio e graus hora de crescimento para a região de Trás-os-Montes.
CONCLUSÕES
A amendoeira é uma das espécies mais representativas da região agrária de Trás-os-Montes. A subsistência desta cultura no presente e futuro é prioritária para a sustentabilidade do setor agrícola da região. Para tal, a utilização de metodologias de machine learning (i.e., método de stepwise) é cada vez mais recorrente, devido á facilidade de utilização dos métodos, possibilidade de trabalhar com várias variáveis e obter rápidos resultados. Associar este método às projeções de clima permite antever possível eventos que causem impactos para a cultura, e desenvolver medidas de adaptação ou mitigação.
Os resultados obtidos comprovaram que as variáveis de clima e a produção do ano anterior podem explicar a evolução da produção, podendo prever as produções futuras. Acredita-se que outros fatores possam ter interferência nesta variável, e por isso novos estudos recomendados para complementar esta investigação.