Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Portugaliae Electrochimica Acta
versão impressa ISSN 0872-1904
Port. Electrochim. Acta v.23 n.4 Coimbra 2005
Corrosion and Passivation Behaviours of Iron in Molten Alkali Carbonates
S.S. Mahmoud *
Chemistry Department, University College of Girls for Arts, Science and Education, Ain Shams University, Heliopolis, Cairo, Egypt
Abstract
The corrosion and passivation behaviours of iron in ternary molten Li2CO3-Na2CO3-K2CO3 mixture at different temperatures (475- 550 oC) were studied. The techniques of measurements were: open- circuit potential, galvanostatic anodic polarization, and cyclic voltammetry. The amounts of iron dissolved in the melt were determined by atomic absorption spectroscopy after each experiment. Iron undergoes spontaneous passivation upon its immersion in the melt and the thickness of the oxide scales increases with the increase of temperature. During the passivation potential range different oxides and spinals are formed. These include a cubic solid solution of FeO and a-LiFeO2, a-LiFe5O8 and a-Fe2O3. At high anodic potentials the decomposition of carbonate takes place leading to passivity break down and CO2 and O2 gases evolution. Also, the spoliation of oxide scales in the carbonate melt occurs at the passivity breakdown. The values of corrosion parameters (Rp, io, icorr, ip) were calculated. The different values of activation energy of corrosion process were calculated. The results of cyclic voltammetric investigation indicate the formation of different oxides and spinals, and the cathodic and anodic decomposition of carbonate. The corrosion tests in 0.05 M HCl solution indicate that the oxide scales formed on iron are multilayered. The outer layer is less protective than the inner one.
Keywords: molten alkali carbonate, corrosion, passivation, iron.
Texto disponível em PDF
Full text only in PDF format
References
1. J.P.T. Vossen, L. Plomp, J.H.W. de Wit, J. Electrochem. Soc. 141 (1994) 340. [ Links ]
2. J.P.T. Vossen, L. Plomp, J.H.W. de Wit, C. Rietveld, J. Electrochem. Soc. 142 (1995) 3327. [ Links ]
3. J.P.T. Vossen, A.H.H. Jonssen, J.H.W. de Wit, J. Electrochem. Soc. 143 (1996) 58. [ Links ]
4. J.P.T. Vossen, P.C.H. Ament, J.H.W. de Wit, J. Electrochem. Soc. 143 (1996) 2272. [ Links ]
5. C.G. Lee, H. Nakano, J. Nishina, I. Uchida, S. Kuroe, J. Electrochem. Soc. 145 (1998) 2747. [ Links ]
6. N. Tatsuo, Y. Kohichi, U. Isamu, Proc. Electrochem. Soc. (1993) 93, Proceedings of the Third International Symposium on Carbonate Fuel Cell Technology, 1993, p. 264.
7. S.A. Salih, A.N. El-Masri, A.M. Baraka, J. Mater. Sci. 36 (2001) 1. [ Links ]
8. A.A. Attia, S.A. Salih, A.M. Baraka, Electrochem. Acta 48 (2002) 113. [ Links ]
9. R.B. Swaroop, J.W. Sim, K. Kinoshila, J. Electrochem. Soc. 125 (1978) 1799. [ Links ]
10. R.A. Dando, L.G. Marianowski, H.C. Maru, J.R. Selnan, J. Electrochem. Soc. 131 (1984) 2535, 2541. [ Links ]
11. H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, J. Electrochem. Soc. 140 (1993) 2565. [ Links ]
12. J.P.T. Vossen, R.C. Makkus, J.H.W. de Wit, J. Electrochem. Soc. 143 (1996) 66. [ Links ]
13. H.A. Abd-El-Rahman, A. Baraka, S.A. Abd-El-Gawad, J. Appl. Electrochem. 29 (1999) 1205. [ Links ]
14. W.M. Carrol, C.B. Berslin, Br. Corros. J. 26 (1991) 225. [ Links ]
15. W.A. Badawy, F.M. Alkharafi, E.Y. Al-Hassan, Corros. Prevention & Control 46 (1999) 51. [ Links ]
* Corresponding author. E-mail address: drsohairr@hotmail.com