Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Portugaliae Electrochimica Acta
versão impressa ISSN 0872-1904
Port. Electrochim. Acta v.24 n.1 Coimbra 2006
New Potential Candidates for Redox Battery Using Liquid Ammoniates: Na+/Na and Ag+/Ag
Anne-Marie Gonçalves,a* Pierre Tran-Van,a) Guillaume Herlem,b) Edith Kwa,b) Bernard Fahys,b) Michel Herlema)
a) IREM-CNRS, Institut Lavoisier, Université de Versailles St-Quentin-en-Yvelines, 78035 Versailles Cedex, France
b) LCMI, Université de Franche Comté, 16, route de Gray, La Bouloie, 25030 Besançon, France
Received 29 April 2005; accepted in revised form 19 October 2005
Abstract
Liquid ammoniates, which are highly conductive electrolyte (more than 100 mS.cm-1 at 20 °C), are proposed as solvents for a redox battery working around room temperature, and up 80 °C. In the negative compartment, the anolyte is NaI · 3.3NH3, and the Na+/Na couple is proposed. It is reversible, as determined by cyclic voltammetry and galvanostatic cycling.
In the positive compartment, the catholyte NaI · 3.3NH3 enriched in silver cations is proposed too. The cathodic material is merely this compound and the cathode is the silver metal. The couple Ag+/Ag is reversible too, as determined by cyclic voltammetry and galvanostatic cycling.
Metallic sodium is extremely stable in this electrolyte; therefore NaI · 3.3NH3 could be used in a redox battery of high energy density and high power density. The maximum working temperature, which is proposed, 70 °C, is lower than the melting point of sodium (98 °C), and avoids high pressures of ammonia.
Keywords: rhodium microparticles, electrocatalysis, carbon monoxide, formic acid, FTIR study.
Texto complete disponível em PDF
Full text only in PDF format
References
1. See for example J. Jander, in «Anorganische und allgemeine Chemie in flüssigen Ammoniak», Friedr. Vieweg & Sohn, Interscience Publishers, Braunschweig, 1966. [ Links ]
2. A.F. Sammels, K.W. Semkov, J. Electrochem. Soc. 133 (1986) 1975. [ Links ]
3. F.A. Uribe, K.W. Semkov, A.F. Sammels, J. Electrochem. Soc. 136 (1989) 3559. [ Links ]
4. L. Bernard, J.-P. Lelieur, A. Le Méhauté, US patent 4,431,718, Feb. 1984. [ Links ]
5. L. Bernard, A. Demortier, J.P. Lelieur, F. t’Kint de Roodenbeke, A. Le Méhauté, J. Phys. Chem. 88 (1984) 3833. [ Links ]
6. W.L. Jolly and C.J. Hallada, in «Non-Aqueous Solvent Systems», T.C. Waddington, Editor, Chapter 1, Academic Press, Inc., London, 1965. [ Links ]
7. J. Badoz, M. Bardin, C. Bernard, M. Herlem, G. Robert, A. Thiébault, J. Electrochem. Soc. 135 (1988) 587. [ Links ]
8. J. Badoz, M. Bardin, C. Bernard, M. Herlem, G. Robert, A. Thiébault, USPatent , n° 4,446,215. [ Links ]
9. T.R. Jow, L.W. Shacklette, M. Maxfield, D. Vernick, J. Electrochem. Soc. 134 (1987) 1730. [ Links ]
10. K.M. Abrahams and L. Pitts, J. Electrochem. Soc. 128 (1981) 2574. [ Links ]
11. C.A. Vincent with F. Bonino, M. Lazzari and B. Scrosati, Edward Arnold Publishers, 168-203 (1984). [ Links ]
12. J.L. Sudworth, J. Power Sources 11 (1984) 143. [ Links ]
13. K.M. Abraham, Solid State Ionics 7 (1982) 199. [ Links ]
14. L. Sanchez, J.M. Tirado, C.P. Vicente, J.C. Jumas, J. Solid State Electrochem. 2 (1998) 328. [ Links ]
15. J.P. Pereira-Ramos, R. Messina, 16. L. Mesonero Herreo, M.E. Arroyo y de Dompablo, M.J. Ruiz Aragon and E. Moran, J. Mater. Chem. 8 (1998) 2405. [ Links ] 17. L.W. Shacklette, T.R. Jow, L. Townsend, J. Electrochem. Soc. 135 (1988) 2669. [ Links ] 18. M. Dubois, G. Froyer, D. Billaud, Synth. Met. 97 (1998) 217. [ Links ] 19. J. Coetzer, J. Power Sources 18 (1986) 377. [ Links ] 20. C.H. Dustmann, J.L. Sudworth, Proceedings 11th Int. Electric Vehicle Symposium Florenz, Italy, 27-30 Sept. 1992, 1-10. [ Links ] 21. R.C. Galloway, S. Haslam, J. Power Sources 80 (1999) 164. [ Links ] 22. J. Prakash, L. Redey, D.R. Vissers, J. Power Sources 87 (2000) 195. [ Links ] 23. J. Badoz-Lambling, M. Bardin, C. Bernard, B. Fahys, M. Herlem, A. Thiebault, G. Robert, J. Electrochem. Soc. 135 (1988) 587. [ Links ] 24. B. Fahys, C. Bernard, G. Robert, M. Herlem, J. Power Sources 20 (1987) 305. [ Links ] 25. M. Herlem, M. Székely, E. Sutter, C. Mathieu, A.-M. Gonçalves, E. Caillot, G. Herlem, B. Fahys, Electrochimica Acta 46 (2001) 2967. [ Links ] 26. E. Peled, in «Lithium Batteries» J.P. Gabano, Editor, p. 47, Academic Press, New York (1983). [ Links ] 27. M. Lazzari and C.A. Vincent, chapter: «Ambient liquid electrolyte cells», in «Modern batteries – an introduction to electrochemical power sources», C.A. Vincent, F. Bonino, M. Lazzari, B. Scrosati, Editors, p. 163, Edward Arnold Publ. London (1984). [ Links ] 28. In «Modern Electrochemistry», J. O’M. Bockris, A.K.N. Reddy, Eds., Vol. 2, p.744, 3rd printing, Plenum/Rosetta Ed., Plenum Press, New York (1977). [ Links ] 29. H. Uchida, H.W. Lei, M. Hiei and M. Watanabe, Proc. Electrochem. Soc. 96-8 (1996) 83. [ Links ] 30. I- and CN- ions have a very similar adsorption behavior. Even in reduction potentials, at a smooth polycrystalline Pt electrode, CN- adsorb strongly, as shown by spectroscopic investigation (this is not possible with I- ions). See for ex. A. Tadjeddine, P. Guyot-Sionnest, Electrochim. Acta 36 (1991) 1849. [ Links ] * Corresponding author. E-mail address: goncalve@chimie.uvsq.fr