SciELO - Scientific Electronic Library Online

 
vol.24 número3A form of adsorptive pre-wave in a sampled dc polarography on a static mercury drop electrodeActive/passive transition of niobium in strong acid and alkaline solutions índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Portugaliae Electrochimica Acta

versão impressa ISSN 0872-1904

Port. Electrochim. Acta v.24 n.3 Coimbra  2006

 

A modified electrodialytic cell to recover heavy metals from wastewater

N.S. Abo-Ghander, S.U. Rahman*, S.M.J. Zaidi

Electrochemical Research Group, Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia

 

Abstract

A modified electrodialytic cell integrates electrodialysis and reduction of metal ions. The cell is able to recover metallic copper from wastewater containing 1000 ppm cupric ions and bring the concentration down to about 1 ppm. The kinetic data of decreasing copper ion concentration fit well in first order kinetics and allow calculation of the over all reaction rate constant. Effect of several parameters, namely, width of wastewater compartment, applied potential and concentration of anolyte and catholyte solution; on the over all reaction rate constant and specific energy consumption were studied. The best combination of parameters results in an overall rate constant of 7.84 × 10-4 sec-1 and specific energy consumption of 48.18 kW-h/kg copper.

Keywords: electrodialysis, electrolysis, copper ions, wastewater, water treatment.

 

Texto disponível em PDF

Full text only in PDF format

 

 

References

1. U. S. Environmental Protection Agency Regulation. Identification and listings of hazardous wastes, Guideline 40, CFR 413, 1992.        [ Links ]

2. L. J. J. Janssen, L. Koene, The role of electrochemistry and electrochemical technology in environmental protection, Chem. Eng. Journal 85 (2002) 137-146.

3. L. Koene, L.J.J. Janssen, Removal of nickel from industrial process liquids, Electrochimica Acta 47 (2001) 695-703.

4. K. Juttner, U. Galla, H. Schiemder, Electrochemical approaches to environmental problem in the process industry, Electrochimica Acta 45 (2000) 2575-2594.

5. R. P. Tison, Copper recovery using a tumbled-bed electrochemical reactor, J. Electrochem. 128 (1981) 317-322.

6. M. Fleishmann, J.W. Oldfield, L. Tennakkoon, Electrochemical removal of copper ions by use of fluidized bed electrode, J. Appl. Electrochem.  1 (1971a) 103.

7. D. N. Bennion, J. Newman, Electrochemical removal of copper ions from very dilute solutions, J. Appl. Electrochem. 2 (1972) 113-122.

8. P. M. Robertson, O. Dossenbach, Stirring by gas introduction and its application in the electroplating industry, Oberflaeche-Surf. 22(9) (1981) 282-287.

9. F. S. Holland, The development of eco-cell process, Chem. Ind. July (1978) 453-458.

10. M. Fleishmann, C.J.H. King, J.W. Oldfield, R.E. Plimley, C.L.K. Tennakkoon, Improvement in and relating to electrochemical cells. Br. Pat. 1419246. (1971b).

11. M. Fleishmann, R.E.W.  Jansson, R.J. Marshall, Improvement in and relating to electrochemical cells. Br. Pat. 1522872. (1976).

12. R. P. Tison, B. Howie, Copper recovery from dilute solutions using a barrel plater, Plat. Surf. Fin. 71(9) (1984) 54-56.

13. C. D. Zhou, D.T. Chin, Copper recovery and cyanide destruction with a plating barrel cathode and a packed-bed anode, Plat. Surf. Fin.  80(6) (1993) 69-77.

14. C. D. Zhou, D.T. Chin, Continuous electrolytic treatment of complex metal cyanides with a rotating barrel plater as the cathode and a packed-bed as the anode, Plat. Surf. Fin.  81 (6) (1994) 70-78.

15. A. A. Al-Shammari, S.U. Rahman, D.T. Chin, Copper recovery from wastewater using an electrochemical rotating barrel reactor, J. Appl. Electrochem.  34 (2004) 447-453.

16. T. Seto, L. Ehara, R. Komori, A. Yamaguchi, T. Miwa, Seawater desalination by electrodialysis, Desalination 25 (1978) 1-7.

17. S. Resbeut, G. Pourcelly, R. Sandeaux, C. Gavach, Electromembrane processes for waste treatment: electrodialysis applied to the demineralization of phenylalnine solutions, Desalination  120 (1998) 235-245.

18. A. J. Chaudhary, J.D. Donaldson, S.M. Grimes, N.G. Yasri, Separation of nickel from cobalt using elecrodialysis in the presence of EDTA, J. Appl. Electrochem. 30 (2000) 439-445.

19. H. Grib, D. Belhocine, H. Lounici, H. Pauss, N. Mameri, Desalting of phenylalanine solutions by electrolysis with ion-exchange membrane, J. Appl. Electrochem.  30 (2000) 259-262.

20. M. Davis, Use advanced methods to treat wastewater, Hydrocarbon Proc.  73 (1994) 43-46.

21. K. K. Chin, S.L. Ong,  Water conservation through reclamation of sewage for reuse. Proceedings of 22nd Annual Conf. Integrated Water Resource Planning for 21st Century, Cambridge, USA. (1995) pp 73-76.

22. A. S. Bal, A.N. Vaidya, Application of membrane technology in wastewater management, Chem. Eng. World 33 (1998) 5.

23. Tokuyama Corp. Brochure, Neosepta Ion-exchange membranes, South Korea (1999).

 

*Corresponding author. E-mail address: srahman@kfupm.edu.sa

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons