SciELO - Scientific Electronic Library Online

 
vol.24 número4New alkaline copper electroplating bath based on an inorganic complexing agentImpedance measurements for electroless nickel plating process índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Portugaliae Electrochimica Acta

versão impressa ISSN 0872-1904

Port. Electrochim. Acta v.24 n.4 Coimbra  2006

 

Corrosion behaviour of 1018, 410 and 800 steels in synthetic wastewater

R. Sandoval-Jabalera,a),*,E. Arias-del Campo,a) J.G. Chacón-Nava,a)

J.M. Malo-Tamayo,b) A. Martínez-Villafañea)

a) Advanced Materials Research Centre, Division of Materials Deterioration and Structural Integrity, Miguel de Cervantes 120, Complejo Ind. Chihuahua,

C.P. 31109, Chihuahua, Chih. México

b) Electrical Research Institute, Mechanical Systems Division, Av. Reforma, C.P. 62490, Cuernavaca, Mor. México

 

Received 22 November 2004; accepted November 2006

 

Abstract

The corrosion behaviour of 1018, 410 and 800 steels exposed to synthetic wastewater has been studied using linear polarization resistance (LPR), cyclic potentiodynamic curves (CPC), electrochemical noise (EN), and electrochemical impedance spectroscopy (EIS) tests. The conditions were: biochemical oxygen demand (BOD) of 776 ppm, a chemical oxygen demand (COD) of 1293 ppm, pH = 8 and the cell temperature was 24 °C. From the CPC and EN results, no localized corrosion was found for the stainless steels. However, the reverse was true for the 1018 steel. The EIS results showed that different corrosion mechanism occurred for the carbon steel compared with the stainless steels. This shows that the corrosion mechanism strongly depends on the type of steel. Overall, the 1018 steel exhibited the highest corrosion rate, followed by the 410 alloy. The highest corrosion resistance was achieved by the 800 alloy. In addition, SEM analyses were carried out to explain the experimental findings.

Keywords: carbon steel, electrochemical behaviour, stainless steels, synthetic wastewater.

 

Texto disponível em PDF

Full text only in PDF format

 

References

1. B. Pesic and V.C. Storhock, Paper No. 1255, Corrosion 2001, NACE, Houston, Texas.

2. B. Poulson, Corrosion Science 23-4 (1983) 391–430.        [ Links ]

3. G. Rocchini, Corrosion Science 34-12 (1993) 2031–2044.

4. G. Rocchini, Corrosion Science 38-12 (1996) 2095–2109.

5. J.R. Scully, Corrosion 56-2 (2000) 199–218.

6. H.W. Pickering, Corrosion Science 23-10 (1983) 1107–1120.

7. B.R. Pearson and P.A. Brook, Corrosion Science 32-4 (1991) 387–398.

8. G. Rocchini, Corrosion Science 38-4 (1996) 655–668.

9. C. Gabrielli, F. Huet, M. Keddam, Corrosion 48-10 (1992) 794.

10. J. Uruchurtu–Chavarín and J.M. Malo, “Electrochemical Noise as a Powerful Electrochemical Technique for Corrosion Research”, Research Trends, Trends in Corrosion Research 2 (1997) 49.

11. R. Cottis and S. Turgoose, “Electrochemical Impedance and Noise” serie Corrosion Testing Made Easy, B.C. Syrett Editor, (1999) NACE International , USA.

12. U. Bertocci, F. Huet, B. Jaoul and P. Rousseau, Corrosion 56-7 (2000) 675–683.

13. R.A. Cottis, Corrosion 57-3 (2001) 265–285.

14. A. Aballe, A. Bautista, U. Bertocci, F. Huet, Corrosion 57-1 (2001) 35–42.

15. D.A. Eden and G.P. Quirk, Paper No. 1303, Corrosion 2001, NACE, Houston, Texas.

16. D.D. McDonald, Corrosion 46-3 (1990) 229-242.

17. P. Agarwal, O.C. Moghissi, M.E. Orazem and L.H. García–Rubio, Corrosion 494 (1993) 278–289.

18. J.R. Scully, D.C. Silverman, M.W. Kending, Editors, “Electrochemical Impedance, Analysis and Interpretation”, ASTM, STP 1188 (1993) USA.

19. L. Domingues, C. Oliveira, J.C.S. Fernandes and M.G.S. Ferreira, Electrochimica Acta 47 (2002) 2253–2258.

20. K.B. Tator, Materials Performance 42-7 (2003).

21. S.H. Gebler and R.J. Detwiler, Materials Performance 417 (2002).

22. G.V. Korshin, J.F. Ferguson and A.N. Lancaster, Corrosion Science 42 (2000) 53–66.

23. A. Iversen, Paper No. 2451, Corrosion 2002, NACE, Denver, Colorado.

24. A.H. Tuthill, Guidelines for the use of stainless steel in municipal waste water treatment plants, NIDI Technical Series No. 10076.

25. M. Stearn and A.L. Geary, J. Electrochem. Soc. 105 (1958) 638.

26. Standard Practice for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion, ASTM Standard G61-86, Pennsylvania, p.340.

27. “Electrochemical Noise Measurements for Corrosion Applications” ASTM STP 1277 (West Conshohocken, PA; ASTM 1996) p. 446 – 470.

28. Y.J. Tan, S. Bailey, B. Kinsella, Corrosion Science 38-10 (1996) 1681-1695.

29. A.N. Rothwell, D.A. Eden, Paper No. 223, Corrosion 92, NACE,  Houston, TX .

30. S. Webster, L. Nathanson, A.G. Green, B.V. Johnson, “The use of electrochemical noise to assess inhibitor film stability”, Corrosion 92, UK, 1992.

31. J. Mickalonis, R.J. Jacko, G.P. Quirk, D.A. Eden,  “The Use of electrochemical noise measurements with nuclear waste tanks, Electrochemical Noise Measurements for Corrosion Applications”, ASTM STP 1277, J.R. Kearns, J.R. Scully, P.R. Roberge, D.L. Reichert, J.L. Dawson, Eds., American Society for Testing and Materials, 1996, pp 210-213.

 

*Corresponding author. E-mail address: raul.sandoval@cimav.edu.mx

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons