Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Portugaliae Electrochimica Acta
versão impressa ISSN 0872-1904
Port. Electrochim. Acta v.26 n.4 Coimbra 2008
Computational Simulation of Bray-Liebhafsky (BL) Oscillating Chemical Reaction
Jie Ren, Jin Zhang Gao*, Wu Yang
Chemistry & Chemical Engineering College, Northwest Normal University, Lanzhon, 730070, PR China
Received 19th January 2008; accepted 3rd April 2008
Abstract
The computational simulation of the Bray-Liebhafsky (BL) oscillating chemical reaction by differential kinetic methodology is carried out in this work. According to the mechanism of Treindl and Noyes involving 10 reaction steps, the changes of the concentrations of I2 and O2 in solution are simulated. When the control parameters are α = 0.55, β = 0.2882 and δ < 0.6, the differential equations present periodic solution, and the oscillations can be observed in 150 min. If α, β and δ are taken as the control parameters, respectively, the bifurcation points would be observed in the processes of control parameters, changing successively with the critical values of α = 0.55, β = 0.2882, and δ = 0.6. The acidity of solution on the nonlinear phenomena is also investigated in detail.
Keywords: computational simulation, Bray-Liebhafsky (BL) oscillating chemical reaction, differential kinetic methodology, bifurcation.
Texto disponível em PDF
Full text only in PDF format
References
1. V. Vukojević, S. Anić, Lj. Kolar-Anić, Phys. Chem. Chem. Phys. 4 (2002) 1276-1283. [ Links ]
2. J. Ren, J.Z. Gao, W. Yang, Comput. Visual. Sci. (2008) DOI 10.1007/s00791-008 -0092-2 (online first).
3. S. Anić, Lj. Kolar-Anić, E. Korös, React. Kinet. Catal. Lett. 61 (1997) 111-116.
4. Lj. Kolar-Anić, . Čupič, S. Anić, G. Schmitz, J. Chem. Soc. Faraday Trans. 93 (1997) 2147-2152.
5. W.C. Bray, J. Am. Chem. Soc. 43 (1921) 1262-1267.
6. D.R. Stanisavljev, A.R. Djordjević, V.D. Likar-Smiljanić, Chem. Phys. Lett. 423 (2006) 59-62.
7. S. Keki, G. Szekely, M.T. Beck, J. Phys. Chem. A 107 (2003) 73-75.
8. R.M. Noyes, L.V. Kalachev, R.J. Field, J. Phys. Chem. 99 (1995) 3514-3520.
9. P. evčík, K. Kissimonová, L. Adamčíková, J. Phys. Chem. A 104 (2000) 3958-3963.
10. F.G. Buchholtz, S. Broecker, J. Phys. Chem. A 102 (1998) 1556-1559.
11. I. Valent, L. Adamčíková, P. evčík, J. Phys. Chem. A 102 (1998) 7576-7579.
12. I. Matsuzaki, T. Nakajima, H.A. Liebhafsky, Faraday Symp. Chem. Soc. 9 (1974) 55-65.
13. P.G. Bowers, Ch. Hofstetter, C.R. Letter, R.T. Toomey, J. Phys. Chem. 99 (1995) 9632-9637.
14. E. David, R.M. Noyes, J. Phys. Chem. 83 (1979) 212 -220.
15. K. Kissimonová, I. Valent, L. Adamčíková, P. evčík, Chem. Phys. Lett. 341 (2001) 345-350.
16. L. Treindl, R.M. Noyes, J. Phys. Chem. 97 (1993) 11354-11362.
17. G. Schmitz, H. Rooze, Far from Equilibrum Synergetics, Springer-Verlly, Berlin, 1979, p51-56.
18. V. Sharma, R.M. Noyes, J. Am. Chem. Soc. 98 (1976) 4345-4361.
19. G. Schmitz, Lj. Kolar-Anić, S. Anić, J. Phys. Chem. A 110 (2006) 10361-10368.
20. J. Zimmerman, R.M. Noyes, J. Phys. Chem. 18 (1950) 658-666.
* Corresponding author. E-mail address: jzgao@nwnu.edu.cn