SciELO - Scientific Electronic Library Online

 
vol.26 número4Phosphate of Aluminum as Corrosion Inhibitor for Steel in H3PO4Comparison of Regression Model and Artificial Neural Network Model for the Prediction of Volume Percent of Diamond Deposition in Ni-Diamond Composite Coating índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Portugaliae Electrochimica Acta

versão impressa ISSN 0872-1904

Port. Electrochim. Acta v.26 n.4 Coimbra  2008

 

Computational Simulation of Bray-Liebhafsky (BL) Oscillating Chemical Reaction

Jie Ren, Jin Zhang Gao*, Wu Yang

Chemistry & Chemical Engineering College, Northwest Normal University, Lanzhon, 730070, PR China

 

Received 19th January 2008; accepted 3rd April 2008

 

 

Abstract

The computational simulation of the Bray-Liebhafsky (BL) oscillating chemical reaction by differential kinetic methodology is carried out in this work. According to the mechanism of Treindl and Noyes involving 10 reaction steps, the changes of the concentrations of I2 and O2 in solution are simulated. When the control parameters are α = 0.55, β = 0.2882 and δ < 0.6, the differential equations present periodic solution, and the oscillations can be observed in 150 min. If α, β and δ are taken as the control parameters, respectively, the bifurcation points would be observed in the processes of control parameters, changing successively with the critical values of  α = 0.55, β = 0.2882, and δ = 0.6. The acidity of solution on the nonlinear phenomena is also investigated in detail.

 

Keywords: computational simulation, Bray-Liebhafsky (BL) oscillating chemical reaction, differential kinetic methodology, bifurcation.

 

 

Texto disponível em PDF

Full text only in PDF format

 

 

References

1. V. Vukojević, S. Anić, Lj. Kolar-Anić, Phys. Chem. Chem. Phys. 4 (2002) 1276-1283.        [ Links ]

2. J. Ren, J.Z. Gao, W. Yang, Comput. Visual. Sci. (2008) DOI 10.1007/s00791-008 -0092-2 (online first).

3. S. Anić, Lj. Kolar-Anić, E. Korös, React. Kinet. Catal. Lett. 61 (1997) 111-116.

4. Lj. Kolar-Anić, Ž. Čupič, S. Anić, G. Schmitz, J. Chem. Soc. Faraday Trans. 93 (1997) 2147-2152.

5. W.C. Bray, J. Am. Chem. Soc. 43 (1921) 1262-1267.

6. D.R. Stanisavljev, A.R. Djordjević, V.D. Likar-Smiljanić, Chem. Phys. Lett. 423 (2006) 59-62.

7. S. Keki, G. Szekely, M.T. Beck, J. Phys. Chem. A 107 (2003) 73-75.

8. R.M. Noyes, L.V. Kalachev, R.J. Field, J. Phys. Chem. 99 (1995) 3514-3520.

9. P. Ševčík, K. Kissimonová, L. Adamčíková, J. Phys. Chem. A 104 (2000) 3958-3963.

10. F.G. Buchholtz, S. Broecker, J. Phys. Chem. A 102 (1998) 1556-1559.

11. I. Valent, L. Adamčíková, P. Ševčík, J. Phys. Chem. A 102 (1998) 7576-7579.

12. I. Matsuzaki, T. Nakajima, H.A. Liebhafsky, Faraday Symp. Chem. Soc. 9 (1974) 55-65.

13. P.G. Bowers, Ch. Hofstetter, C.R. Letter, R.T. Toomey, J. Phys. Chem. 99 (1995) 9632-9637.

14. E. David, R.M. Noyes, J. Phys. Chem. 83 (1979) 212 -220.

15. K. Kissimonová, I. Valent, L. Adamčíková, P. Ševčík, Chem. Phys. Lett. 341 (2001) 345-350.

16. L. Treindl, R.M. Noyes, J. Phys. Chem. 97 (1993) 11354-11362.

17. G. Schmitz, H. Rooze, Far from Equilibrum Synergetics, Springer-Verlly, Berlin, 1979, p51-56.

18. V. Sharma, R.M. Noyes, J. Am. Chem. Soc. 98 (1976) 4345-4361.

19. G. Schmitz, Lj. Kolar-Anić, S. Anić, J. Phys. Chem. A 110 (2006) 10361-10368.

20. J. Zimmerman, R.M. Noyes, J. Phys. Chem. 18 (1950) 658-666.

 

* Corresponding author. E-mail address: jzgao@nwnu.edu.cn

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons