Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Portugaliae Electrochimica Acta
versão impressa ISSN 0872-1904
Port. Electrochim. Acta v.27 n.4 Coimbra 2009
Monte Carlo Simulation of the Solvent Contribution to the Potential of Mean Force for the Phenol Adsorption on Au(210) Electrodes
R. S. Neves,1, *, A. J. Motheo,1 R. P. S. Fartaria,2,3 F. M. S. S. Fernandes3
1Laboratory of Interfacial Electrochemistry, Department of Physical Chemistry, Institute of Chemistry of São Carlos, University of São Paulo, Avenida do Trabalhador Sancarlense, CP 780, 13560-970 São Carlos-SP Brazil
2Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, G1 IXJ, UK
3Molecular Simulation Group, CCMM, Department of Chemistry and Biochemistry, Faculty of Science, University of Lisboa, Campo Grande, Bloco C8, 1749-016, Lisboa Portugal
Received 1 March 2009; accepted 1 July 2009
Abstract
This paper reviews some recent canonical Monte Carlo simulations of the Au(210)/H2O interface using a DFT force field developed by us. New results are reported on the solvent contribution to the potential of mean force (PMF) for the phenol adsorption, from a dilute aqueous solution, onto the Au(210) surface. The Monte Carlo simulations show the common features normally observed in the simulation of water in contact with metallic surfaces, where the water molecules adsorb forming bilayers. The molecules adsorbed over the Top gold sites form hydrogen bonds between the first and second solvent layers. The PMF calculations indicate that the phenol molecule penetrates the solvent layers with the aromatic ring in a perpendicular configuration and the oxygen atom pointing to the surface. The PMF results also suggest the existence of hydrogen bonds between the phenol molecule and the first solvent layer of the water molecules adsorbed onto the Top.
Keywords: potential of mean force, phenol adsorption, Au(210), Monte Carlo simulation
Full text only in PDF format
Texto disponível em PDF
References
1. M.P. Soriaga, J.L. Stickney, A.T. Hubbard, J. Electroanal. Chem. 144 (1983) 207.
2. J.H. White, M.P. Soriaga, A.T. Hubbard, J. Electroanal. Chem. 177 (1984) 89.
3. M.P. Soriaga, J.H. White, D. Song, V.K.F. Chia, P.O. Arrhenius, A.T. Hubbard, Inorg. Chem. 24 (1985) 73.
4. A.J. Motheo, A. Sadkowski, R.S. Neves, J. Electroanal. Chem. 430 (1997) 253.
5. A. Sadkowski, A.J. Motheo, R.S. Neves, J. Electroanal. Chem. 455 (1998) 107.
6. R.S. Neves, E. De Robertis, A.J. Motheo, Electrochim. Acta 51 (2006) 1215.
7. R.S. Neves, E. De Robertis, A.J. Motheo, Appl. Surf. Sci. 253 (2006) 1379.
8. G. Láng, K.E. Heusler, J. Electroanal. Chem. 457 (1998) 257.
9. T. Pajkossy, T. Wandlowski, D.M. Kolb, J. Electroanal. Chem. 414 (1996) 209.
10.T. Pajkossy, Solid State Ionics 94 (1997) 123.
11. F.S. Damos, R.C.S. Luz, A.A. Sabino, M.N. Eberlin, R.A. Pilli, L.T. Kubota, J. Electroanal. Chem. 601 (2007) 181.
12. J. Moon, T. Kang, S. Oh, S. Hong, J. Yi, J. Colloid Interface Sci. 298 (2006) 543.
13. L. Thomsen, B. Watts, D.V. Cotton, J.S. Quinton, P.C. Dastoor, Surf. Interface Anal. 37 (2005) 472.
14. H.-G. Hong, W. Park, Electrochim. Acta 51 (2005) 579.
15. B. Adolphi, E. Jähne, G. Busch, X. Cai, Anal. Bioanal. Chem. (2004).
16. F. Schreiber, Prog. Surf. Sci. 65 (2000) 151.
17. J.S. Quinton, L. Thomsen, P.C. Dastoor, Surf. Interface Anal. 25 (1997) 931.
18. A. Avranas, N. Sedlácková, E. Malasidou, J. Colloid Interface Sci. 285 (2005) 665.
19. Q. Wang, L. Zhong, J. Sun, J. Shen, Chem. Mater. 17 (2005) 3563.
20. M.S. McGovern, P. Waszczuk, A. Wieckowski, Electrochim. Acta 51 (2006) 1194.
21. C. Roth, N. Benker, T. Buhrmester, M. Mazurek, M. Loster, H. Fuess, D.C. Koningsberger, D.E. Ramaker, J. Am. Chem. Soc. 127 (2005) 14607.
22. S.A.R.K. Deshmukh, M.v.S. Annaland, J.A.M. Kuipers, Appl. Catal. A 289 (2005) 240.
23. Y. Morikawa, J.J. Mortensen, B. Hammer, J.K. Norskov, Surf. Sci. 386 (1997) 67.
24. J.R.B. Gomes, J.A.N.F. Gomes, J. Mol. Struc. (THEOCHEM) 463 (1999) 163.
25. A. Ignaczak, J. Electroanal. Chem. 480 (2000) 209.
26. Y. Widjaja, C.B. Musgrave, Surf. Sci. 469 (2000) 9.
27. A. Ignaczak, J. Electroanal. Chem. 495 (2001) 160.
28. M. Mavrikakis, J. Rempel, J. Greeley, L.B. Hansen, J.K. Norskov, J. Chem. Phys. 117 (2002) 6737.
29. P.R.N. de Souza, D.A.G. Aranda, J.W.N. Carneiro, C.S.B. Oliveira, O.A.C. Antunes, F.B. Passos, Int. J. Quantum Chem. 92 (2003) 400.
30. P. Vassilev, R.A. van Santen, M.T.M. Koper, J. Chem. Phys. 122 (2005) 054701.
31. R.P.S. Fartaria, F.F.M. Freitas, F.M.S.S. Fernandes, Int. J. Quantum Chem. 107 (2007) 2169.
32. C. Hartnig, J. Grimminger, E. Spohr, J. Electroanal. Chem. 607 (2007) 133.
33. D.A.R.S. Latino, R.P.S. Fartaria, F.F.M. Freitas, J. Aires-de-Souza, F.M.S.S. Fernandes, J. Electroanal. Chem. 624 (2008) 109.
34. R.S. Neves, A.J. Motheo, R.P.S. Fartaria, F.M.S.S. Fernandes, J. Electroanal. Chem. 609 (2007) 140.
35. S. Meng, E.G. Wang, S. Gao, Phys. Rev. B 69 (2004) 195404.
36. A. Bilic, J.R. Reimers, N.S. Hush, R.C. Hoft, M.J. Ford, J. Chem. Theory Comput. 2 (2006) 1093.
37. R.S. Neves, A.J. Motheo, F.M.S.S. Fernandes, R.P.S. Fartaria, J. Braz. Chem. Soc. 15 (2004) 224.
38. R.S. Neves, A.J. Motheo, R.P.S. Fartaria, F.M.S.S. Fernandes, J. Electroanal. Chem. 612 (2008) 179.
39. A. Ignaczak, J.A.N.F. Gomes, S. Romanowski, J. Electroanal. Chem. 450 (1998) 175.
40. D. Song, D. Forciniti, J. Chem. Phys. 115 (2001) 8089.
41. T. Panczyk, P. Szabelski, W. Rudzinski, J. Phys. Chem. B 109 (2005) 10986.
42. U. Reimer, M. Wahab, P. Schiller, H.-J. Mögel, Langmuir 21 (2005) 1640.
43. P. Zarzycki, P. Szabelski, R. Charmas, Appl. Surf. Sci. 252 (2005) 752.
44. F.M.S.S. Fernandes, R.P.S. Fartaria, D.A.R.S. Latino, F.F.M. Freitas, Port. Electrochim. Acta 26 (2008) 1. [ Links ]
45. R.P.S. Fartaria, F.F.M. Freitas, F.M.S.S. Fernandes, J. Electroanal. Chem. 574 (2005) 321.
46. J.N. Glosli, M.R. Philpot, J. Chem. Phys. 96 (1992) 6962.
47. J.N. Glosli, M.R. Philpot, J. Chem. Phys. 98 (1993) 9995.
48. D.A. Rose, I. Benjamin, J. Chem. Phys. 98 (1993) 2283.
49. M.R. Philpot, J.N. Glosli, Chem. Phys. 198 (1995) 53.
50. M.R. Philpot, J.N. Glosli, S.-B. Zhu, Surf. Sci. 335 (1995) 422.
51. E. Spohr, Acta Chem. Scand. 49 (1995) 189.
52. E. Spohr, Electrochim. Acta 44 (1999) 1697.
53. E. Spohr, Solid State Ionics 150 (2002) 1.
54. E. Spohr, Electrochim. Acta 49 (2003) 23.
55. I.C. Yeh, M.L. Berkowitz, J. Electroanal. Chem. 450 (1998) 313.
56. S. Franzen, Chem. Phys. Lett. 381 (2003) 315.
57. A. Ignaczak, J.A.N.F. Gomes, J. Electroanal. Chem. 420 (1997) 209.
58. Y. Zeng, J. Yi, H. Wang, G. Zhou, S. Liu, J. Mol. Struc. (THEOCHEM) 724 (2005) 81.
59. C.D. Taylor, R.G. Kelly, M. Neurock, J. Electroanal. Chem. 607 (2007) 167.
60. V.I. Avdeev, G.M. Zhidomirov, Surf. Sci. 492 (2001) 137.
61. F. Tielens, M. Saeyrs, E. Tourwé, G.B. Marin, A. Hubin, P. Geerlings, J. Phys. Chem. A 106 (2002) 1450.
62. E. Spohr, G. Tóth, K. Heinzinger, Electrochim. Acta 41 (1996) 2131.
63. J.A.N.F. Gomes, A. Ignaczak, J. Mol. Struc. (THEOCHEM) 463 (1999) 113.
64. R.O. Lezna, N.R. de Tacconi, S.A. Centeno, A.J. Arvia, Langmuir 7 (1991) 1241.
65. M.P. Soriaga, A.T. Hubbard, J. Am. Chem. Soc. 104 (1982) 3937.
66. A. Hamelin, J. Electroanal. Chem. 138 (1982) 395.
67. A. Hamelin, A.M. Martins, J. Electroanal. Chem. 407 (1996) 13.
68. R.P.S. Fartaria, R.S. Neves, P.C.R. Rodrigues, F.F.M. Freitas, F.M.S.S. Fernandes, Comput. Phys. Commun. 175 (2006) 116.
69. E. Spohr, J. Chem. Phys. 107 (1997) 6342.
70. I.-C. Yeh, M.L. Berkowitz, J. Chem. Phys. 111 (1999) 3155.
71. M. Mezei, D.L. Beveridge, Annu. New York Acad. Sci. 482 (1986) 1.
72. C.A. Reynolds, P.M. King, W.G. Richards, Mol. Phys. 76 (1992) 251.
73. W.F. van Gunsteren, X. Daura, A.E. Mark, Helvetica Chim. Acta 85 (2002) 3113.
74. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, J. Chem. Phys. 79 (1983) 926.
75. D.A. Mooney, F. Müller-Plathe, K. Kremer, Chem. Phys. Lett. 294 (1998) 135.
76. C.D. Taylor, M. Neurock, Curr. Opin. Solid St. M. 9 (2005) 49.
77. J.-S. Filhol, M. Neurock, Angew. Chem. Int. Ed. 45 (2006) 402.
* Corresponding author. E-mail adress: rodrigo_santis_neves@yahoo.com.br