Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Revista Portuguesa de Pneumologia
versão impressa ISSN 0873-2159
Rev Port Pneumol v.13 n.2 Lisboa mar. 2007
Pulmão profundo – Reacção celular ao VIH
Deep lung – Cellular reaction to HIV
Maria Alcide Tavares Marques1
Vera Alves2
Victor Duque3
M Filomena Botelho4
Resumo
A evolução da infecção VIH é caracterizada por uma grande variabilidade individual. Na verdade, omo em outros processos da mesma natureza, depende largamente das complexas inter-relacções que num dado momento se estabelecem entre o hospedeiro e o agente agressor. Contudo, nesta infecção, essa correlação assume um papel determinante.
Desde o início da pandemia que o pulmão se assumiu como alvo preferencial de complicações, quer de origem infecciosa quer de outras etiologias. A esta inevitabilidade biológica diríamos não serem de facto estranhas as características anatomo-funcionais do órgão, enquanto interface privilegiada entre o meio interno e o ambiente exterior, aliadas a particularidades de ordem imunológica que o tornam, sob muitos aspectos, um órgão único.
Cedo se constatou que esta infecção se acompanhava de uma disfunção imunológica progressiva que culminava na completa exaustão deste sistema nas fases terminais da doença. Desde o reconhecimento da SIDA até à presente data foram sendo adquiridos enormes conhecimentos não só em relação ao vírus, como aos seus mecanismos patogénicos, no entanto subsistem ainda numerosas questões para as quais o estado da arte ainda não dispõe de respostas. Nessas incluíriamos os efeitos do VIH na dinâmica celular do pulmão. Vários estudos efectuados, nos quais tivemos oportunidade de participar, demonstraram a apresença de uma alveolite linfocitária durante a fase assintomática da infecção. Desde essa altura têm-se vindo a adquirir novos conhecimentos relativos aos mecanismos imunológicos e bioquímicos subjacentes à entrada do VIH nas células, às células-alvo, ao microambiente citocínico, assim como de outros mediadores celulares envolvidos. Neste contexto, a descoberta de que receptores específicos de quimiocinas actuavam como co-receptores para o VIH abriu definitivamente um novo capítulo na investigação dirigida aos mecanismos responsáveis pelo tropismo viral e infecção celular. Neste âmbito, vários autores têm salientado a importância, para além da molécula CD4, dos receptores quimiocínicos CCR5 e CXCR4 na ligação e, posteriormente, na entrada do vírus nas células, reconhecendo-se em relação ao primeiro uma importância fundamental na transmissão da infecção, enquanto que o CXCR4 parece ser utilizado por estirpes virais que emergem tardiamente no decurso da doença, quer isoladamente, quer em associação com o CCR5.
Palavras-chave: Lavagem broncoalveolar, SIDA, celularidade, receptores CCR5 e CXCR4.
Abstract
The course of HIV infection is accompanied by a wide individual variability. The complex and large interplay between host and viral factors is crucial in the disease’s evolution. The lung has been recognised from the beginning of the disease as one of the main targets of infectious and non-infectious complications of AIDS. In this setting both anatomic and immunologic particularities of this organ play an important role.
The hallmark of HIV is progressive immune dysfunction. Despite the intensive research into the pathogenesis, several questions remain to be answered on the dynamic effects of HIV on pulmonary cells. Previous studies in which we have participated showed the early presence of lymphocytic alveolitis from the asymptomatic phase of infection. Since then, many collected data has brought new insights into the immune and biochemical mechanisms involving HIV cell entry, as well as target cells, cytokines and other cellular mediators.
In this context, the discovery that specific chemokine receptors could act as co-receptors for HIV, allowed a better understanding of the mechanisms underlying viral cellular entry and tropism. On this issue several authors have reported that in addition to the CD4 molecule, most strains of HIV use the chemokine receptor CCR5 for viral attachment and entry into the host cells. This receptor seems to be very important in disease transmission, whereas CXCR4 receptor tends to be used by the viral strains that emerge later in the disease in addition to or instead of the CCR5.
Key-words: Bronchoalveolar lavage, AIDS, cellularity, CCR5 and CXCR4 receptors.
Texto completo disponível apenas em PDF.
Full text only available in PDF format.
Bibliografia
1. AIDS Epidemic Update (UNAIDS/WHO) 2003 (Dec.).
2. Mayaud C, Cadranel J. AIDS and Lung in a Changing World. Thorax 2001; 56:423-6. [ Links ]
3. Wolff AJ, O’Donnell AE. Pulmonary Manifestations of HIV Infection in the Era of Highly Active Antiretroviral Therapy. Chest 2001; 120:1888-93.
4. Schluger NW, Perez D and Liu YM. Reconstitution of Immune Responses to Tuberculosis in Patients with HIV Infection Who Receive Antiretroviral Therapy. Chest 2002; 122:597-602.
5. Judson MA. Highly Active Antiretroviral Therapy for HIV with Tuberculosis- Pardon the Granuloma. Chest 2002; 122:399-340.
6. Mayaud C, Cadranel J. Manifestations Pulmonaires in VIH. Doin Éditeurs-Paris 2001; 77-95.
7. Ashkin D, Hollender ES, Narita M. Won’t Get Fooled Again Chest 1999; 116:856-7.
8. Ledergerber B, Egger M, Erard V, Weber R, Hirshel B et al. AIDS Related Opportunistic Illnesses Occurring After Initiation of Potent Antiretroviral Therapy-The Swiss HIV Cohort Study. JAMA 1999; 282:23.
9. Weverling GJ, Mocroft A, Ledergerber B et al. Discontinuation of Pneumocystis carinii Pneumonia Prophylaxis After Start of Highly Active Antiretroviral Therapy in HIV Infection: Euro SIDA Study Group. Lancet 1999; 353:1293-8.
10. Quiros LB, Miro JC, Penã J M et al. A Randomized trial of the Primary and Secondary Prophylaxis against Pneumocystis carinii Pneumonia after Highly Active Antiretroviral Therapy in Patients with HIV Infection. N Engl J Med 2001; 344:159-67.
11. Narita M, Ashkin D, Hollender ES, Pitchenik AE. Paradoxical Worsening of Tuberculosis Following Antiretroviral Therapy in Patients with AIDS. Am J Crit Care Med 1998; 158:157-61.
12. Naccache JM, Antoine M, Wislez M, Fleury-Feith, J, Oksenhendler E, Mayaud C, Cadranel J. Sarcoide-Like Pulmonary Disorder in Human Immunodeficiency Virus – Infected Patients Receiving Antiretroviral Therapy. Am J Crit Care Med 1999; 159:2009-13.
13. Lenner R, Bregman Z, Teirstein A S, DePalo L. Reccurrent Pulmonary Sarcoidosis In HIV Infected Patients Receiving Highly Active Antiretroviral Therapy. Chest 2001; 119:978-81.
14. Agostini C, Cipriani A, Cadrobbi P, Semenzato G. In: AIDS and the Lung. Edit. Semenzato G. European Respiratory Monograph 1995; 89-124.
15. Hoshino Y, Tse DB, Rochford G, Prabhakar S, Hoshino S, Chitkara N, Kuwaabara K, Ching E, Raju B, Gold JA, Borkowsky W, Rom WN, Pine R, Weiden M. Mycobacterium tuberculosis – Induced CXCR4 and Chemokine Expression Leads to Preferential X4 HIV1 Replication in Human Macrophages. J Immunology 2004; 172:6251-8.
16. Alfano M, Poli G. Role of Cytokines and Chemokines in the Regulation of Innate Immunity and HIV Infection. Molecular Immunology 2004; 2-22.
17. Austyn JM. Antigen-Presenting Cells. Am J Resp Crit Care Med 2000; 162:146-50.
18. D´Ostiani CF, Del Sero G, Bacci A, Montagnoli C, Spreca A, Mencacci A, Ricciardi-Castagnoli P, Romani L. Dendritic cells Discriminate between Yeasts and Hyphae of the Fungus Candida albicans. Implications For Initiation of T helper Cell Immunity in vitro and in vivo. J Exp Med 2000; 191:1661-74.
19. Barron MA, Blyveis N, Palmer BE, Mawhinney S, Wilson CC. Influence of Plasma Viremia on Defects in Number and Immunophenotype of Blood Dendritic cell subsets in Human Immunodeficiency Virus 1 – Infected Individuals. J Infect Dis 2003; 187:26-37.
20. Gompels M, Patterson S, Roberts MS, Macatonia SE, Pinching AJ, Knight SC. Increase in Dendritic Cell Numbers Their Function and the Proportion Uninfected during AZT Therapy. Clin Exp Immunol 1998; 112:347-53.
21. Revillard JP. Immunologie. Edit. De BoecK Université, Bruxelas 1995; 143-55.
22. Lawn SD, Butera ST and Folks TM. Contribution of Immune Activation To The Pathogenesis and Transmission of Immunodeficiency Virus Type 1 Infection. Clin Microb Rev 2001: 753-77.
23. Jacobs R, Heiken H, Schmidt RE. Mutual Interference of HIV and Natural Killer Cell- Mediated Immune Response. Molecular Immunology 2004; XXX 1-11. 24. Leibson PJ. Signal Transduction during Natural Killer Cell Activation: Inside the Mind of a Killer. Immunity 1997; 6:655-61.
25. Valentin A, Pavlakis GN. Natural Killer Cells are Persistently Infected and Resistant to Direct Killing by HIV-1. Anticancer Res 2003; 23:2071-5.
26. Scheppler JA, Nicholson JK, Swan DC, Ansari A, McDougal JS. Down Regulation of MHC–I in a CD4+ T Cell Line, CEM-E5 After HIV1 Infection. J Immunol 143:2858-66.
27. Mavilio D, Benjamin J, Daucher M et al. Natural Killer Cells in HIV 1 Infection. Dichotomous Effects of Viremia on Inhibitory and Activating Receptors and Their Functional Correlates. Immunology 2003; 25:1511-6.
28. Mueller A, Strange PG. The Chemokine Receptor CCR5. J Bioch Cell Biology 2004; 36:35-38.
29. Richard HoruK. Survey Chemokine Receptors. Cytokine and Grow Factor Rev 2001; 12:313-35.
30. Lehner T. The Role of Chemokine Ligands and Antibodies To CCR5 Coreceptors in Preventing HIV Infection. Immunol 2002; 23:347-51.
31. Pastore C, Ramos A, Mosier D. Intrinsic Obstacles to Human Immunodeficiency Virus Type 1 Coreceptor Switching. J Virology 2004; 78:7565-74.
32. Veazey RS, Marx PA and Lackner AA. The Mucosal Immune System: Primary Target for HIV Infection and Aids. Trends in Immunology 2001; 22:626-33.
33. Hunninghake GW, Kawanan O, Ferrans VJ, Young RC. Characterization of Inflammatory and Immune Efector Cells in the Lung Parenchyma of Patients With Interstitial Lung Disease. Am Rev Resp Dis 1981; 123:407-12.
34. Semenzato G, Chilosi M, Ossie E, Trentin L et al. Bronchoalveolar Lavage and Lung Histology Comparative Analysis of Inflammatory and Immunocompetent Cells in patients with Sarcoidosis and Hipersensitivity Pneumonitis. Am Rev Resp Dis 1985; 132:400-4.
35. Agostini C, Facco M, Siviero M et al. Chemokines IP 10 and Mig Expression and Direct Migration of Pulmonary CD8 CXCR3 T Cells in Lungs of Patients with HIV Infection and T Cell Alveolitis. Am J Resp Crit Care 2000; 162:1466-73.
36. Homer L, Twigg III, Linan DS, Richard B, Kenneth S Knox, Rodney J et al. Lymphocytic Alveolitis Bronchoalveolar Lavage Viral Load, and outcome in Human Immunodeficiency Virus Infection. Am J Resp Crit Care Med 1999; 159:1439-44.
37. Rich EA. Activation-Inactivation of HIV1 in the Lung. J Biomed Sci 1998; 5:1-10.
38. Baganha MF, Marques MAT, Leite I, Robalo Cordeiro C, Mota Pinto A, Teixeira ML, Anjos MJ, Lima MAM, Corte Real R, Serra E, Malcata L, Lopes C, Meliço Silvestre A, Santos Rosa A. Alveolite Subclínica em Indivíduos Infectados pelo Vírus da Imunodeficiência Humana. Via Pneumológica 1993; 1:21-31.
39. Israël-Biet D, Esvant H, Laval AM, Cadranel L. Impairment of b chemokine and cytokine production in patents with HIV related Pneumocystis jerovici pneumonia. Thorax 2004; 59:247-51.
40. Estaquier J, Lelièvre J-D, Petit F, Brunner T, Parseval LM, Richman DD, Ameisen JC, Corbeil J. Effects of Antiretroviral Drugs on Human Immunodeficiency Virus Type 1-Induced CD4+ T-Cell Death. J Virology 2002; 5966-73.
41. Holm GH, Zhang C, Gorry PR, Peden K, Schols D, Clercq ED, Gabuzda DJ. Apoptosis of Bystander T Cells Induced by Human Immunodeficiency Virus Type 1 With Increased Envelope/Receptor Affinity and Coreceptor Binding Site Exposure Virology;78:4541-51.
42. Douek DC, Betts MR, Hill BJ, Little SJ, Lempicki R, Metcalf JA, Casazza J, Yoder C, Adelsberger JW, Stevens RA, Baseler MW, Keiser P, Richman DD, Davey RT, Koup RA. Evidence for Increased T Cell Turnover and Decreased Thymic Output in HIV Infection. J Immunology 2001; 167:6663-8.
43. Zhang ZQ, Notermans DW, Sedgewick G, Cavert W, Wietgrefe S, Zupancic M, Gebhard K, Henry K, Boies L, Chen Z, Jenkins M, Mills R, Goodwin C, Shuwirth MC, Danner SA, Haase AT. Kinetics of CD4+T cell repopulation of Lymphoid Tissues after Treatment of HIV 1 Infection. Immunology 1998; 95:1154-9.
44. Wang L, Chen JJY, Gelman BB, Konig R, Cloyd MW. A Novel Mechanism of CD4 Lymphocyte Depletion Involves Effects of HIV on Resting Lymphocytes: Induction of Lymph Node Homing and Apoptosis Upon Secondary Signaling Through Homing Receptors. J Immunology 1999; 162:268-76.
45. Lehner T. The Role of CCR5 Chemokine Ligands and Antibodies to CCR5 Coreceptors In Preventing HIV Infection. Trends in Immunology 2002; 23:347-51.
46. Veazey RS, Marx PA, Lackner AA. The Mucosal Immune System: Primary Target for HIV and AIDS. Trends in Immunology 2001; 22:626-33.
1 Departamento de Ciências Pneumológicas e Alergológicas dos Hospitais da Universidade de Coimbra (Director: Prof. Doutor M Fontes Baganha)
2 Instituto de Imunologia da Faculdade de Medicina de Coimbra (Director: Prof. Doutor Santos Rosa)
3 Departamento de Doenças Infecciosas dos Hospitais da Universidade de Coimbra (Director: Prof. Doutor Meliço Silvestre)
4 Instituto de Biofísica/Biomatemática da Faculdade de Medicina de Coimbra(Directora: Prof.ª Doutora M Filomena Botelho)
Recebido para publicação/received for publication: 06.12.10
Aceite para publicação/accepted for publication: 06.12.19