Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Revista Portuguesa de Pneumologia
versão impressa ISSN 0873-2159
Rev Port Pneumol v.15 n.3 Lisboa maio 2009
A intervenção da célula epitelial na asma
Anabela Mota Pinto 1
Ana Todo-Bom 2
Resumo
Faz -se uma revisão da intervenção da célula epitelial brônquica na fisiopatologia da asma. O epitelio que reveste as vias respiratórias actua como uma barreira física, separando o meio externo do meio interno pulmonar, controla a permeabilidade intercelular e transcelular, e, deste modo, a acessibilidade dos agressores inalantes as células apresentadoras de antigenio envolvidas na resposta imunoinflamatoria. As células epiteliais unidas por tight junctions contribuem para a integridade das vias aéreas e expressam poliovirus receptorrelated protein (PRR), toll like receptors (TLR) e protease -activated receptors (PAR), que reconhecem agentes bacterianos e alergenios. A sua disfuncao transforma -as em fonte de mediadores intervenientes na inflamação.
A interacção bidireccional entre, por um lado, o epitelio e os elementos constitutivos do brônquio e por outro, as partículas inaladas, tem subjacente a formação de uma unidade, com identidade propria designada EMTU epithelial mesenchymal trophic unit.
Esta extensa intervencao coloca a célula epitelial no centro de accao da cronicidade e remodelacao do processo asmático.
As doenças infecciosas e o stress ambiental sao capazes de induzir alterações a nível da célula epitelial susceptíveis de modificar a sua resposta a estimulações futuras, nomeadamente a ampliar a resposta a outras agressões infecciosas por acção sinérgica das vias de sinalização.
O epitelio brônquico tem assim funções de barreira que lhe permite exercer uma permeabilidade selectiva, a nível intracelular e transcelular, e ainda metabolicamente activo pelas capacidade de produzir mediadores quimiotacticos e citocinas envolvidos no recrutamento e na activação celular, com repercussão na broncomotricidade e na remodelação da parede brônquica.
Palavras -chave: Asma, epitelio, inflamação.
The role of the epithelial cell in asthma
Abstract
It is done a review of the intervention of the epithelial bronchial cell in the pathophysiology of asthma. The respiratory epithelium acts as a physical barrier that separates the external environment from the pulmonary internal environment. It controls the intercellular and trans -cellular permeability and this way the accessibility of the inhaled pathogens to the antigen presenting cells involved in the immuno inflammatory response. Epithelial cells connected by tight junctions contribute to the barrier function of the airways.
They express a poliovirus receiver related protein (PRR), toll like receptors (TLRs) and protease-activated receptors (PARs), which recognize bacterial agents and allergens. Its dysfunction turns them into important sources of inflammatory mediators.
The bidirectional interaction between the epithelium and other bronchial wall elements with inhaled particles originates a structure with its own identity, the designated EMTU Epithelial Mesenchymal Trophic Unit.
These observations support a central role for the epithelial cell in chronic inflammation and in the remodelling of the asthmatic process.
Infectious diseases and environmental stress can activate different cell receptors and signalling pathways that induce changes in the cell surface modifying their response to future stimulations, namely to other infectious aggressions.
The bronchial epithelium has barrier functions with selective permeability; it has metabolic activity producing cytokines and chemokines stimulating the cells recruitment and activation, increasing the bronchial reactivity and the remodelling of the airways.
Key-words: Asthma, epithelium, inflammation.
Texto completo disponível apenas em PDF.
Full text only available in PDF format.
Bibliografia
1. Bousquet Jean, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med 2000;161(5):1720 -1745.
2. Todo -Bom A, Mota Pinto A. Fisiopatologia da asma grave. Rev Port Imunoalergol 2006;14(Supl 2):43-48. [ Links ]
3. Hammad Hamida, Lambrecht BN, Hammad H, Lambrecht BN. Recent progress in the biology of airway dendritic cells and implications for understanding the regulation of asthmatic inflammation. J Allergy Clin Immunol 2006;118:331 -336.
4. Kim Chang H. Regulation of FoxP3+ Regulatory T Cells and Th17 cells by retinoids. Clin Dev Immunol 2008;(416910):1 -12.
5. Larche Mark. Regulatory T cells in allergy and asthma. Chest 2007;132:1007 -1014.
6. Kearley Jennifer, Robinson DS, Lloyd CM. CD4+CD25+ regulatory T cells reverse established allergic airway inflammation and prevent airway remodeling. J Allergy Clin Immunol 2008;122(3):617 -624.
7. Barbato Angelo, Turato G, Baraldo S, Bazzan E, Calabrese F, Panizzolo C, et al. Epithelial damage and angio -genesis in the airways of children with asthma. Am J Respir Crit Care Med 2006;174:975 -981.
8. Knight Darryl. Increased permeability of asthmatic epithelial cells to pollutants: does this mean that they are intrinsically abnormal? Clin Exp Allergy 2002; 32:1263 -1265.
9. Vroling AB, Fokkens WJ, van Drunen CM. How epithelial cells detect danger: aiding the immune response. Allergy 2008;63(9):1110 -1123
10. Colognato Renato, Slupsky JR, Jendrach M, Burysek L, Syrovets T, Simmet T. Differential expression and regulation of protease -activated receptors in human peripheral monocytes and monocyte -derived antigen-presenting cells. Blood 2003;102:2645 -2652.
11. Hammad Hamida, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nature Rev 2008;8:193 -204.
12. Tai HY, Tam MF, Chou H, Peng HJ, Su SN, Perng DW, Shen HD. Pen ch 13 allergen induces secretion of mediators and degradation of occludin protein of human lung epithelial cells. Allergy 2006:61:382-388.
13. Cortes L, Carvalho AL, Todo -Bom A, Faro C, Pires E, Verissimo P. Purification of a novel aminopeptidase from the pollen of parietaria-judaica that alters epithelial integrity and degrades neuropeptides. J Allergy Clin Immunol 2006;118(4):878 -884.
14. Kawai Taro, Akira S. Pathogen recognition with Toll-like receptors. Curr Opin Immunol 2005;17:338 -344.
15. Laurent Geoffrey J. No Bit PARt for PAR -1. Am J Respir Cell Mol Biol 2005;33:213 -215.
16. Suzuki Tomoko, Moraes TJ, Vachon E, Ginzberg HH, Huang TT, Matthay MA, et al. Proteinase activated receptor -1 mediates elastase -induced apoptosis of human lung epithelial cells. Am J Respir Cell Mol Biol 2005; 33:231-247.
17. Ebeling Cory, Lam T, Gordon JR, Hollenberg MD, Vliagoftis H. Proteinase -activated receptor-2 promotes allergic sensitization to an inhaled antigen through a TNF-mediated pathway. J Immunol 2007;179:2910-2917.
18. Rahman Irfan, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol 2006;533:222 -239.
19. Comhair Susy A, Bhathena PR, Farver C, Thunnissen FB, Erzurum SC. Extracellular glutathione peroxidase induction in asthmatic lungs: evidence for redox regulation of expression in human airway epithelial cells. FASEB J 2001;15:70 -78.
20. Hammad Hamida, Charbonnier AS, Duez C, Jacquet Astewart GA, Tonnel A -B, et al. TH2 polarization by Der p 1 pulsed monocyte -derived dendritic cells is due to the allergic status of the donors. Blood 2001;98:1135-1141.
21. Holgate Stephen T. The epithelium takes centre stage in asthma and atopic dermatitis. Trends Immunol 2007;28:248 -251.
22. Arima Masafumi, Fukuda T. Novel functions of two chemokines in allergic disease thymus and activation-regulated chemokine (TARC)/CCL17 and macrophage-derived chemokine (MDC)/CCL22. Allergy Clin Immunol Int J World Allergy Org 2006; 18(2):58 -64.
23. Ying Sun, OConnor B, Ratoff J, Meng Q, Mallett K, Cousins D, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2 -attracting chemokines and disease severity. J Immunol 2005;174:8183 -8190.
24. Todo -Bom Ana, Mota Pinto A, Vale Pereira S, Alves V, Dourado M, Santos Rosa M. Substance P in long-lasting asthma: Immunoinflammatory pathways. Allergy Clin Immunol Int J World Allergy Org 2006; 18(6):242 -248.
25. Springer Jochen, Groneberg DA, Pregla R, Fischer A. Inflammatory cells as source of tachykinin induced mucus secretion in chronic bronchitis. Regul Pept 2005;124(1 -3):195 -201.
26. Holgate Stephen T, Davies DE, Lackie PM, Wilson SJ, Puddicombe SM, Lordan JL. Epithelial mesenchymal interactions in the pathogenesis of asthma. J Allergy Clin Immunol 2000;105:193 -204.
27. Hackett Tillie -Louise, Knight DA. The role of epithelial injury and repair in the origins of asthma. Curr Opin Allergy Clin Immunol 2007;7:63 -68.
28. Tesfaigzi Y. Processes involved in the repair of injured airway epithelia. Arch Immunol Ther Exp (Warsz) 2003;51:283 -288.
29. Allakhverdi Zoulfia, Comeau MR, Jessup HK, Yoon BR, Brewer A, Chartier S, et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med 2007;204:253 -258.
30. Liu Yong -Jun, Soumelis V, Watanabe N, Ito T, Wang YH, Malefyt RW, et al. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu Rev Immunol 2007;25:193-219.
31. Leonard Warren J. TSLP: finally in the limelight. Nature Immunol 2002;3:605-607.
32. Fedorov IA, Wilson SJ, Davies DE, Holgate ST. Epithelial stress and structural remodelling in childhood asthma. Thorax 2005;60:389 -394.
33. Zanini Andrea, Chetta A, Saetta M, Baraldo S, DIppolito R, Castagnaro A, et al. Chymase positive mast cells play a role in the vascular component of airway remodeling in asthma. J Allergy Clin Immunol 2007;120:329 -333.
34. Zhang Shaoli, Smartt H, Holgate ST, Roche WR. Growth factors secreted by bronchial epithelial cells control myofibroblast proliferation: an in vitro co-culture model of airway remodeling in asthma. Lab Invest 1999;79: 395 -405.
35. Phipps Simon, Benyahia F, Ou TT, Barkans J, Robinson DS, Kay AB. Acute allergen -induced airway remodelling in atopic asthma. Am J Respir Cell Mol Biol 2004;31:626 -632.
36. Willis Brigham C, Borok Z. TGF -beta induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 2007;293:L525 -L534.
37. Nihlberg Kristian, Larsen K, Hultgardh -Nilsson A, Malmstrom A, Bjermer L, Westergren -Thorsson G. Tissue fibrocytes in patients with mild asthma: a possible link to thickness of reticular basement membrane? Respir Res 2006;7:50.
38. Chen Yin, Zhao YH, Di YP, Wu R. Characterization of human mucin 5B gene expression in airway epithelium and the genomic clone of the amino -terminal and 5 -flanking region. Am J Respir Cell Mol Biol 2001;25:542-553.
39. Burgel Pierre -Regis, Montani D, Danel C, Dusser DJ, Nadel JA. A morphometric study of mucins and small airway plugging in cystic fibrosis. Thorax 2007;62:153 -161.
40. Deshmukh Hitesh S, Case LM, Wesselkamper SC, Borchers MT, Martin LD, Shertzer HG, et al. Metalloproteinases mediate mucin 5AC expression by epidermal growth factor receptor activation. Am J Respir Crit Care Med 2005;171:305 -314.
41. Lordan James L, Bucchieri F, Richter A, Konstantinidis A, Holloway JW, Thornber M, et al. Cooperative effects of Th2 cytokines and allergen on normal and asthmatic bronchial epithelial cells. J Immunol 2002;169:407 -414.
42. Zhou Beiyun, Ann DK, Li X, Kim KJ, Lin H, Minoo P, et al. Hypertonic induction of aquaporin -5: novel role of hypoxia -inducible factor -1. Am J Physiol Cell Physiol 2007;292:C1280-C1290.
43. Sidhaye Venkataramana K, Schweitzer KS, Caterina MJ, Shimoda L, King LS. Shear stress regulates aquaporin -5 and airway epithelial barrier function. PNAS 2008; 105(9):3345-3350.
44. ONeill Luke A, Bowie AG. The family of five: TIR domain -containing adaptors in Toll -like receptor signalling. Nat Rev Immunol 2007;7(5):353-364.
45. Wright Jo Rae. The wisdom of lung surfactant: balancing host defense and surface tension-reducing functions. Am J Physiol Lung Cell Mol Physiol 2006; 291(5):L847-L850.
46. Fleer Andre, Krediet TG. Innate immunity: toll like receptors and some more. a brief history, basic organization and relevance for the human newborn. Neonatology 2007;92(3):145-157.
47. McCullers Jonathan A, Bartmess KC. Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J Infect Dis 2003; 187: 1000-1009.
48. Bai Tony R, Knight DA. Structural changes in the airways in asthma observations and consequences. Clin Sci (Lond) 2005;108:463-477.
49. Ratner Adam J, Lysenko ES, Paul MN, Weiser JN. Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces. Proc Natl Acad Sci (USA) 2005;102:3429-3434.
50. Goulding J, Snelgrove R, Saldana J, Didierlaurent A, Cavanagh M, Gwyer E, et al. Respiratory infections. Do we ever recover? Proc Am Thorac Soc 2007; 4:618-625.
51. Torday JS, Rehan VK. The evolutionary continuum from lung development to homeostasis and repair. Am J Physiol Lung Cell Mol Physiol 2007;292:L608-L611.
1 Professora Associada com Agregação de Fisiopatologia Faculdade de Medicina da Universidade de Coimbra
Directora do Instituto de Patologia Geral
2 Assistente Hospitalar Graduada em Imunoalergologia nos Hospitais da Universidade de Coimbra.
Doutoramento em Medicina Interna Pneumologia pela Faculdade de Medicina da Universidade de Coimbra
Recebido para publicação/received for publication: 08.11.13
Aceite para publicação/accepted for publication: 08.12.30