Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Investigação Operacional
versão impressa ISSN 0874-5161
Inv. Op. v.25 n.2 Lisboa 2005
An extension of a variant of a predictor-corrector primal-dual method from linear programming to semidefinite programming
F. Bastos * ‡
A. Teixeira * †
‡Departamento de Estatística e Investigação Operacional, Universidade de Lisboa
† Departamento de Matiática, Universidade de Trás-os-Montes e Alto Douro, Vila Real
* CIO - Centro de Investigação Operacional
Abstract
We extend a variant of a predictor-corrector primal-dual method for Linear Programming to Siidefinite Programming. Two versions are proposed. One of the versions uses the HKM direction and the other the NT direction. We present the algorithms associated with these versions and the computational experience using the SDPLIB 1.2 collection of Semidefinite Programming test problis. We show that, in general, the algorithm using the HKM direction is the best and is also better than the one relative to the classical method.
Keywords: Semidefinite Programming, predictor-corrector interior point variant, HKM direction, NT direction.
Texto completo apenas disponível em PDF.
Full text only in PDF.
References
F. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial optimization, SIAM Journal Optimization, 5(1) (1995), 13-51. [ Links ]
F. J. Bastos, Problemas de transporte e métodos de ponto interior, Dissertação de Doutoramento, Universidade Nova de Lisboa, Lisboa, 1994.
R. Bellman, K. Fan, On systems of linear inequalities in Hermitian matrix variables, V. L. Klee (editor), Convexity, Proceedings of Symposia in Pure Mathematics, American Mathematical Society, 7 (1963), 1-11.
B. Borchers, CSDP, a C library for semidefinite programming, Optimization Methods and Software, 11(1) (1999), 613-623.
B. Borchers, SDPLIB 1.2, a library for semidefinite programming test problems, Optimization Methods and Software, 11(1) (1999), 683-690.
B. Borchers, CSDP 3.2, User's Guide, Technical Report, Department of Mathematics,
B. Borchers, Implementation issues in CSDP, Technical Report, Department of Mathematics, New Mexico Tech,
C. Helmberg, F. Rendl, R. J. Vanderbei, H. Wolkowicz, An interior-point method for semidefinite programming, SIAM Journal Optimization, 6(2) (1996), 342-361.
R. Horn, C. Johnson, Matrix Analysis ,
R. Horn, C. Johnson, Topics in Matrix Analysis,
M. Kojima,
L. Lovász, On the
R. D. C. Monteiro, Primal-dual path-following algorithms for semidefinite programming, SIAM Journal Optimization, 7(3)(1997), 663-678.
A. Nemirovskii, Y. Nesterov, Interior-Point Polynomial Algorithms in Convex Programming, Society for Industrial and Applied Mathematics,
Y. E. Nesterov, M. J. Todd, Self-scaled barriers and interior-point methods for convex programming, Mathematics of Operations Research, 22(1) (1997), 1-42.
M. J. Todd, A study of search directions in primal-dual interior-point methods for semidefinite programming, Optimization Methods and Software, 11 (1999), 1-46.
M. J. Todd, K. C. Toh, R. H. Tutuncu, On the Nesterov-Todd direction in semidefinite programming, SIAM Journal Optimization, 8(3) (1998), 769-796.