SciELO - Scientific Electronic Library Online

 
vol.26 número1Inferência estatística dos estimadores de eficiência obtidos com a técnica fronteira não paramétrica de DEA: Uma metodologia de Bootstrap índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Investigação Operacional

versão impressa ISSN 0874-5161

Inv. Op. v.26 n.1 Lisboa  2006

 

An integer programming model for truss topology optimization

Ana M. Faustino*

Joaquim J. Júdice

† Isabel M. Ribeiro*

A. Serra Neves ‡

* Secção de Matemática do Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal afausti@fe.up.pt

iribeiro@fe.up.pt

† Departamento de Matemática da Universidade de Coimbra and Instituto de Telecomunicações, Coimbra, Portugal joaquim.judice@co.it.pt  

‡ Secção de Materiais de Construção do Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto, Porto asneves@fe.up.pt  

 

Abstract

In this paper a truss-structure model is described for finding a kinematically stable structure with optimal topology and cross-sectional size and minimum volume. The underlying model findsapplicationsinsomecivil engineering structuraldesignproblemsand takes into consideration all the conditions associated with the limit states usually presented in structural safety codes. Ultimate limit states are treated applying plasticity theory, while serviceability limit states are dealt with via elasticity theory. The admissible solution space is discretised using bar elements. A 0 − 1 variable is assigned to each one of these elements, in order to indicate if it is or not included in the solution. The mathematical formulation of the model leads to a mixed 0 1 integer nonlinear program with a nonlinear objective function and linear and bilinear constraints. It is shown that this problem can be reduced into a mixed 0 1 integer linear program by exploiting the so– called reformulation–linearization technique. Some computational experience is included to highlight the importance of these formulations in practice.

Keywords: Truss topology optimization, integer programming, reformulation-linearization technique.

 

Texto completo apenas disponível em PDF.

Full text only in PDF.

 

References

[1] Eurocode 1 EN 1991. Basis of Design and Actions on Structures. CEN, Brussels, 1998.

[2] Eurocode 2 EN 1992. DesignofConcreteStructures -Part1:GeneralRulesandRulesfor Buildings. CEN, Brussels, 1999.

[3] I. Arora and M. Haung. Methods for optimization of nonlinear problems with discrete variables: a review. Structural Optimization, 8:69–85, 1994.         [ Links ]

[4] J. Bauer. A survey of methods for discrete optimum structural design. Computer Assisted Mechanics and Engineering Sciences, 1:27–38, 1994.

[5] M. P. Bendsoe and O. Sigmund. Topology Optimization -Theory, Methods and Applications. Springer, 2003.

[6] S. Bollapragada, O. Ghattas, and J. Hoocker. Optimal design of truss structures by logic-based branch and cut. Operations Research, 49:42–51, 2001.

[7] A. Brooke, D. Kendrick, A. Meeraus, and R. Raman. GAMS a User’s Guide. GAMS Development Corporation, New York, 1998.

[8] W. Dobbs and L. Felton. Optimization of truss geometry. ASCE Journal of Structural Division, 95:2105–2118, 1969.

[9] W. Dorn, R. Gomory, and H. Greenberg. Automatic design of optimal structures. Journal de Mécanique, 3:25–52, 1964.

[10] A. Ghali and A. M. Nevilleand T. G. Brown. Structural analysis: A unified classical and matrix approach. Spon Press, London, 2003.

[11] O. Ghattas and I. Grossmann. MINLP and milp strategies for discrete sizing structural optimization problems. In Proceedings of ASCE 10th Conference on Electronic Computation. Indianapolis, 1991.

[12] A.Ghosh andA.Mllik. Theory of Mechanisms and Machines.Affiliated East-WestPress, New Delhi, 1988.

[13] I.Grossmann,V.T.Voudouris, andO.Ghattas. Mixed-integerlinearprogramming formulations of some nonlinear discrete design optimization problems. In C. A. Floudas and P. M. Pardalos, editors, Recent Advances in Global Optimization. Princeton University Press, 1992.

[14] X. Guo and G. Cheng. An extrapolation approach for the solution of singular optima. Structural and Multidisciplinary Optimization, 19:255–262, 2000.

[15] X.Guo,G.Cheng, andK.Yamazaki.A newapproachforthesolutionof singularoptima in truss topology optimization with tress and local buckling constraints. Structural and Multidisciplinary Optimization, 22:364–372, 2001.

[16] A.Hoback.Optimizationof singularproblems. StructuralOptimization,12:93–97,1996.

[17] U. Kirsch.Onsingulartopologiesinoptimumstructuraldesign. StructuralOptimization, 2:133–142, 1990.

[18] G. Rozvany. Difficulties in truss topology optimization with stress, local bucking and system stability constraints. Structural Optimization, 11:213–217, 1996.

[19] G. Rozvany, M. Bendsoe, and Kirsch. Layout optimization of structures. Applied Mechanics Reviews, 48:41–118, 1995.

[20] E.Salajegheh andG.Vanderplaats.Optimumdesignof trusseswithdiscretesizing and shape variables. Structural Optimization, 6:79–85, 1993.

[21] H. Sherali and W. Adams. A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishers, Boston, 1999.

[22] H. Simon. The Sciences of the Artificial. MIT Press, Massachusetts, 1969.

[23] M. Stolpe and k. Svanberg. Modeling topology optimization problems as mixed linear programs. In Optimization and Systems Theory. Department of Mathematics, Royal Institute ofTechnology(KTH),SE-10044Stockholm,Sweden,2001.

[24] G. Sved and Z. Ginos. Structural optimization under multiple loading. International Journal of Mechanical Sciences, 10:803–805, 1968.

[25] A.Templeman.Heuristicmethodsindiscretestructuraloptimization.InW.Gutkowski, editor, DiscreteStructuralOptimization,pages135–165.CISMCourses andLecturesNo.