Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Investigação Operacional
versão impressa ISSN 0874-5161
Inv. Op. v.27 n.1 Lisboa 2007
Experiências computacionais com modelos de fluxo para múltiplos produtos com funções de custo não lineares e não separáveis
Luis Ernesto Torres Guardia
João Carlos C. B. Soares de Mello
Departamento de Engenharia de Produção Universidade Federal Fluminense, Brasil
Title: Computational experiments with flow models for multicommmodity using non linear and non separable cost functions.
Abstract
In this paper we present the study and the numerical implementation of the primal-dual interior-point method for the solution of the convex nonlinear multicommodity network flow problem. At each iteration of the interior-point method, we solve the corresponding linear system, expressed by the augmented-indefinite system, using an indefinite preconditioned conjugate gradient algorithm combined with the AINV algorithm. We conduct some numerical experiments for networks of different dimensions and number of products and for some nonlinear costs. The computational results show the effectiveness of the interior-point method for this class of network problem.
Keywords: Nonlinear programming. Interior-point method. Network flow problem
Resumo
Neste trabalho são apresentados o estudo e a implementação numérica do método de pontos interiores primal-dual para o problema não linear convexo de fluxo em rede com múltiplos produtos. Em cada iteração do método de pontos interiores, resolve-se o correspondente sistema linear, expresso na forma de aumentado indefinido usando o algoritmo do gradiente conjugado com um pré-condicionador indefinido apropriado combinado com o algoritmo AINV. Foram realizados alguns testes numéricos para redes de várias dimensões e vários produtos, com funções de custos não lineares. Os resultados computacionais mostram a eficiência do método de pontos interiores para o caso de fluxo em rede para múltiplos produtos.
Texto completo apenas disponível em PDF.
Full text only in PDF.
6 Referências
Ahuja, A.; Magnanti, T. & Orlin, J. (1993). Network Flows: Theory, Algorithms and Applications, Prentice-Hall, Inc. New Jersey. [ Links ]
Babonneau, F. & Vial, J. (2005). ACCPM with a nonlinear constraint and an active set strategy to solve nonlinear multicommodity flow problems.
http://www.optimization-online.org/DB_HTML/2005/06/1148.html. p. 1-29.
Bai, Z. & Wang, Z. (2006). Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems. Journal of Computational and Applied Mathematics, 187, 202-226.
Benzi, M.; Cullum, J. & Tuma, M. (2000). Robust approximate inverse preconditioning for the conjugate gradient method. SIAM Journal on Scientific Computing, 22, 4, 1318-1332.
Benzi, M.; Golub, G. & Liesen, J. (2005). Numerical solution of saddle point problems. Acta Numerica, 14, 1-137.
Bergamaschi, L.; Gondzio, J. & Zilli, G. (2004). Preconditioning indefinite systems in interior point methods for optimization. Computational Optimization and Applications, 28, 149-171.
Bunch, J. & Parlett, B. (1971). Direct methods for solving symmetric indefinite systems of linear equations. SIAM Journal of Numerical Analysis, 8, 639-655.
Castro, J. (2000). A specialized interior point algorithm for multicommodity network flows. SIAM Journal on Optimization, 10, 3, 852 -877.
Dollar, H. & Wathen, A. (2006). Approximate factorization constraint preconditioners for saddle-point matrices. SIAM Journal on Scientific Computing, 27, 5, 1555-1572.
Durazzi, C. & Ruggiero, V. (2003). Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems. Numerical Linear Algebra with Applications, 10, 673-688.
El-Bakry, A. ; Tapia, R. ; Tsuchiya, T. & Zhang, Y. (1996). On the formulation and theory of Newton interior-point method for nonlinear programming. Journal of Optimization Theory and Applications, 89, 507-541.
Fiacco, A. e McCormick, G. (1968). Nonlinear programming: Seqüencial unconstrained minimization technique. John Wiley and Sons.
Goffin, J.; Gondzio, R.; Sarkissian, R. & Vial, J. (1996). Solving nonlinear multicommodity flow problems by the analytic center cutting plane method. Mathematical Programming, 76, 131154.
Golub, G.; Wu, X. & Yuan, J. (2001). SOR-like methods for augmented systems. BIT, 41, 1, 71-85.
Júdice, J., Patricio, J., Portugal, L., Resende, M. E Veiga, G. (2003). A study of the préconditioners of network interior point methods. Computational Optimization and Applications, 24, 5 35.
Karmarkar, N. (1984). A new polynomial time algorithm for linear programming. Combinatorica, 4, 373-395.
Keller, C.; Gould, N. & Wathen, A. (2000). Constraint preconditioning for indefinite linear systems. SIAM Journal Matrix Analysis and Applications, 21, 4, 1300-1317.
Lawphongpanich, S. (2000). Simplicial with truncated Dantzig-Wolfe decomposition for nonlinear multicommodity network flow problems with side constraints. Operations Research Letters, 26, 33-41.
Luksan, L.; Matonoba, C. & Vlcek, J. (2005). Interior point methods for large-scale nonlinear programming, Optimization Methods and Software, 20, 4-5, 569-582.
Migdalas, A. (2006) . Nonlinear Programming in Telecommunications. In: Handbook of Optimization in Telecommunications [edited by M. Resende and P. Pardalos], Springer, 27-66.
Nagurney, A. (1984). Comparative tests of multimodal traffic equilibrium methods, Transportation Research, 18B, 469-485.
Nagurney, A. (2006). Supernetworks. In: Handbook of Optimization in Telecommunications [edited by M. Resende and P. Pardalos], Springer, 1073-1119.
Nocedal, J. & Wright, S. (1999). Numerical Optimization, Springer-Verlag, New York.
Ouorou, A.; Mahey, P. & Vial, J. (2000). A survey of algorithms for convex multicommodity flow problems. Management Science, 46, 1, 126-147.
Shi, Y. (2004). A projected-steepest-descent potential-reduction algorithm for convex programming problems. Numerical Linear Algebra with Applications, 11, 883-893.
Torres, L. (2006). Modelo não linear de fluxo em rede para multi-produtos. CD-ROM. XIII CLAIO Congreso Latino-Iberoamericano de Investigación Operativa, 27 30 de Noviembre de 2006, Montevideo, Uruguay.
Wächter A. & Biegler, L. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, Serie A, 106, 1, 25-57.
Waltz, R.; Morales, J.; Nocedal, J. & Orban, D. (2005). An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming, Serie A, 107, 3, 391-408.
Wright, S. (1997). Primal-Dual Interior-Point Methods, SIAM, Philadelphia, Pa.
Yamashita, H. & Yabe, H. (2005). Quadratic convergence of a primal -dual interior point method for degenerate nonlinear optimization problems, Computational Optimization and Applications, 31, 123-143.