Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Revista Portuguesa de Ciências do Desporto
versão impressa ISSN 1645-0523
Rev. Port. Cien. Desp. v.5 n.3 Porto set. 2005
Cálculo da força propulsiva gerada pela mão e antebraço do nadador através da dinâmica computacional de fluidos.
A.J. Silva1
A.F. Rouboa2
L. Leal2
J. Rocha2
F.B. Alves3
A.M. Moreira4
V.M. Reis1
J.P. Vilas Boas5
1 Universidade de Trás-os-Montes e Alto Douro, Departamento de Ciências do Desporto, Vila Real;
2 Universidade de Trás-os-Montes e Alto Douro, Departamento de Engenharias;
3 Universidade Técnica de Lisboa, Faculdade de Motricidade Humana;
4 Instituto Politécnico de Santarém, Escola Superior de Desporto;
5 Universidade do Porto, Faculdade de Desporto, Portugal.
RESUMO
A investigação da força propulsiva produzida pela mão e antebraço dos nadadores tem-se baseado em testes experimentais. No entanto, existem algumas dúvidas sobre a precisão e fiabilidade destes cálculos. Este estudo teve dois objectivos: i) dar continuidade ao uso da Dinâmica Computacional de Fluidos (DCF) como uma nova metodologia de investigação na Natação; ii) aplicar a DCF no cálculo dos coeficientes de resistência (Cr) e sustentação (Cs) resultantes da simulação numérica do fluxo externo da mão e antebraço. Para este efeito, utilizaram-se três modelos bidimensionais de um escoamento em regime permanente. Um modelo frontal (q=90º, F=0º) e dois modelos laterais, um tendo o dedo polegar como bordo de ataque (q=180º, F=0º), e o outro tendo o dedo mindinho como bordo de ataque (q=0º, F=0º). O sistema de resolução de equações utilizado foi o das equações de Navier-Stokes, para fluidos não compressíveis. Os principais resultados, demonstraram que o Crfoi o coeficiente que contribuiu mais para a propulsão, sendo constante para toda a amplitude de velocidades com um valor máximo de 1,16. Com base nestes resultados, podemos concluir que: i) a DCF pode ser considerada uma nova metodologia susceptível de desenvolvimento para o cálculo de forças hidrodinâmicas em Natação (de facto neste estudo não se procedeu à respectiva validação, pelo que não se pode concluir pela sua validade); ii) nos três modelos estudados o Cs parece ter uma importância secundária na geração de força propulsiva.
Palavras-chave: CFD, modelos de turbulência, hidrodinâmica, sustentação, resistência.
ABSTRACT
Measurement of swimmer's hand/forearm propulsive forces generation using Computational Fluid Dynamics.
Propulsive force generated by swimmers hand/forearm has been studied through experimental tests. However, there are serious doubts as to whether forces quantified with these procedures are accurate enough to be meaningful. The main purpose of the present work was twofold: i) continuing the use of computational fluid dynamics (CFD) as a new tool in swimming research; ii) apply the CFD method in the calculation of drag and lift coefficients resulting from the numerical resolution equations of the flow around the swimmers hand/forearm. For these purposes three, two-dimensional, models of a right male hand/forearm were studied. A frontal model (q =90º, F=0º) and two lateral models, one with the thumb as leading edge (q=180º, F=0º), and the other with the litle finger as the leading edge (q=0º,F=0º). The governing system of equations considered was the incompressible Reynolds averaged Navier-Stokes equations. The main results reported that the drag coefficient was the coefficient that accounts more for propulsion, and was almost constant for the whole range of velocities, with a maximum value of 1,16 (Cd=1,16). Through the results, we can conclude that: i) CFD can be considered an interesting new approach for hydrodynamic forces calculation in swimming research; ii) in the three models studied the lift coefficient may be of secondary importance in force generation.
Key Words: CFD, turbulence models, drag, lift, hydrodynamics.
Texto completo disponível apenas em PDF.
Full text only available in PDF format.
Referências
1. Berger, MAM; de Groot, G. & Hollander, AP (1995). Hydrodynamic drag and lift forces on human hand arm models. Journal of Biomechanics 28(2)125-133. [ Links ]
2. Berger, MAM; Hollander, AP & de Groot, G (1997). Technique and energy l osses in front crawl swimming. Medicine & Science in Sports & Exercise 29(11) 1491-1498. [ Links ]
3. Berger, MAM; Hollander, AP & de Groot, G (1999). Propulsive force in front crawl swimming. Journal of Sports Science 17, 97-105. [ Links ]
4. Berthier, B; Bouzebar, R; & Legallais, L(2002). Blood flow patterns in an automatically realistic coronary vessel influence of three different reconstruction models. Journal of Biomechanics 35(10)1347-1356. [ Links ]
5. Bixler, BS & Riewald, S (2002). Analysis of swimmers hand and arm in steady flow conditions using computational fluid dynamics. Journal of Biomechanics 35, 713-717. [ Links ]
6. Bixler, BS; Schloder, M (1996). Computational fluid dynamics: an analytical tool for the 21st century swimming scientist. Journal of Swimming Research 11, 4-22. [ Links ]
7. Cappaert, J & Rushall, BS (1994). Biomechanical analyses of Champion Swimmers. Spring Valley, CA: Sports Science Association. [ Links ]
8. Cappaert, J (1993). 1992 Olympic report Limited Circulation to all FINA Federations. Colorado Springs: United States Swimming. [ Links ]
9. Marshall, I; Shunzi, Z; Papathanasapoulu, P; Hoskins, P & Xui YY (2004). MRI and CFD studies of pulsative flow in healthy and stenosed carotid bifurcation models. Journal of Biomechanics 37 (5), 679-687. [ Links ]
10. Payton, CJ & Bartlett, RM (1995). Estimating propulsive forces in swimming from three dimensional data. Journal of Sports Sciences 13, 447-454. [ Links ]
11. Sanders, RH (1999). Hydrodynamic characteristics of a swimmers hand. Journal of Applied Biomechanics 15, 3-26. [ Links ]
12. Sanders, RH (1997a). Extending the «Schleihauf» model for estimating forces produced by a swimmers hand. In B.O. Eriksson, L. Gullstrand (Eds.) Proceedings of the XII FINA World Congress on Sports Medicine. Goteborg: Chalmers Reproservice, 421-428. [ Links ]
13. Sanders, RH. (1997b). Hydrodynamic characteristics of a swimmer Hand with adducted thumb: implications for technique. In B.O. Eriksson, L. Gullstrand (Eds.) Proceedings of the XII FINA World Congress on Sports Medicine. Goteborg: Chalmers Reproservice, 429-434. [ Links ]
14. Schleihauf, RE (1978). Swimming propulsion: A hydrodynamic analysis. In R.M. Ousley (Ed.) ASCA 1977 World Clinic Year Book. Florida: Ft. Lauderdale, 49-85. [ Links ]
15. Schleihauf, RE (1979). A hydrodynamic analysis of swimming propulsion. In J. Terauds, & E.W. Bedingfield (Eds.) Swimming III. Baltimore: University Park Press, 70-109. [ Links ]
16. Schleihauf, RE; Gray, L. & DeRose, J (1983). Three-dimensional analysis of hand propulsion in the sprint front crawl stroke. In P. Hollander, P. Huijing, & G. De Groot (Eds.) Biomechanics and medicine in swimming, 173-183. [ Links ]
17. Toussaint, HM (2000). An alternative fluid dynamic explanation for propulsion in front crawl swimming. Proceedings of the XVIII International Symposium on Biomechanics in Sports. Applied Program. Chinese University of Hong Kong, China, 96-103. [ Links ]
18. Toussaint, H; Den Berg, CV & Beek, WJ (2002). Pumped-up propulsion during front crawl swimming. Medicine and Science in Sports Exercises 34, 314-319. [ Links ]
19. Wood, TC (1977). A fluid dynamic analysis of the propulsive potential of the hand and forearm in swimming. Master of Science Thesis, Dalhouise University Press, Halifax, NS. [ Links ]
CORRESPONDÊNCIA
António José Silva
Universidade de Trás-os-Montes e Alto Douro
Departamento de Ciências do Desporto
CIFOP
R. Dr. Manuel Cardona
5000 Vila Real