Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Revista Portuguesa de Ciências do Desporto
versão impressa ISSN 1645-0523
Rev. Port. Cien. Desp. v.6 n.2 Porto maio 2006
Glicocorticóides e síndrome metabólica: aspectos favoráveis do exercício físico nesta patofisiologia.
J. Rodrigo Pauli
Luciana Souza
Gustavo Rogatto
Ricardo Gomes
Eliete Luciano
Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Laboratório de Sinalização Celular, Campinas, Brasil.
RESUMO
A síndrome metabólica tem diversas similaridades com a síndrome de Cushing (intolerância à glicose, resistência à insulina, hipertensão, dislipidemia, obesidade central), sugerindo que anormalidades no metabolismo dos glicocorticóides estão associadas com a síndrome metabólica. Por outro lado, a prática regular de atividade física tem sido recomendada para a prevenção e a reabilitação de doenças cardiovasculares e outras doenças crônico-degenerativas. Estudos epidemiológicos têm demonstrado relação direta entre inatividade física e presença de múltiplos fatores de risco como os encontrados na síndrome metabólica. Os efeitos benéficos do exercício físico têm sido demonstrados na prevenção e no tratamento da hipertensão arterial, na resistência à insulina, no diabetes, na dislipidemia e na obesidade. Nesse contexto, esta revisão tem o intuito de discutir os efeitos metabólicos dos glicocorticóides e a associação da ação destes esteróides com as características da síndrome metabólica. Além disso, vamos explorar os mecanismos pelos quais a atividade física pode favorecer o metabolismo dos usuários de glicocorticóides.
Palavras-chave: glicocorticóides, síndrome metabólica, exercício físico.
ABSTRACT
Metabolic syndrome and glucocorticoid: Favorable aspects of physical exercise on this pathophysiology
The metabolic syndrome has several similarities with Cushing's syndrome (impaired glucose tolerance, insulin resistance, hypertension, dyslipidemia, central obesity) suggesting that abnormalities in the glucocorticoid metabolism have a link with the metabolic syndrome. On the other hand, regular physical activity provides several health benefits helping in prevention and rehabilitation of cardiovascular and other chronic diseases. Epidemiological studies have been demonstrating a direct relationship between physical inactivity and the multiple risk factors such as those found in the metabolic syndrome. Otherwise, it has been demonstrated the physical exercise benefit to prevent and treat arterial hypertension, insulin resistance, diabetes, dislipidemy, and obesity. This review will discuss the metabolic effects in the context of glucocorticoid metabolism and establish the association of glucocorticoid action with the features of the metabolic syndrome, specially obesity and insulin resistance. Moreover, we will explore how physical activity promotes favorable physiologic adaptations improving quality of life in the abnormalities metabolic association with the excess of glucocorticoid.
Keys Words: glucocorticoid, metabolic syndrome and physical exercise.
Texto completo disponível apenas em PDF.
Full text only available in PDF format.
BIBLIOGRAFIA
1. Rosen J, Miner JN. (2005). The search for safer glucocorticoid receptor ligands. Endocrine Reviews 26 (3):452-464. [ Links ]
2. Leclerc N, Luppen CA, Ho VV, Nagpal S, Hacia JG, Smith E, Frenkel B. (2004). Gene expression profiling of glucocorticoid –inhibited osteoblasts. Journal of molecular Endocrinology 33: 175-193
3. Hochberg Z, Pacak K, Chrousos GP. (2003). Endocrine withdrawal syndromes. Endocrine Reviews 24 (4): 523-538.
4. Pauli JR, Almeida Leme JAC, Crespilho DM, Mello MAR, Rogatto GP, Luciano E. (2005). Influência do treinamento físico sobre parâmetros do eixo hipotálamo-pituitária-adrenal de ratos administrados com dexametasona. Rev Port Cien Desp 2: 143-152.
5. Arnaldi G, Angeli A, Atkinson AB, Bertagna X, Cavagnini F, Chrousos GP, Fava GA, Findling JW, Gaillard RC, Grossman AB, Kola B, Lacroix A, Mancini T, Mantero F, Newell-Price J, Nieman LK, Sonino N, Vance ML, Giustina A, Boscaro M. (2003). Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 88 (12): 5593-5602.
6. Covar RA, Leung DY, McCormick D, Steelman J, Zeitler P, Spahn JD. (2000). Risk factors associated with glucocorticoid-induced adverse effects in children with severe asthma. J Allergy Clin Immunol (106 (4): 651-659.
7. Watts LM, Manchem VP, Leedom TA, Rivard AL, McKay RA, Bao D, Neroladakis T, Monia BP, Bodenmiller DM, Cao JX-C, Zhang HY, Cox AL, Jacobs SJ, Michael MD, Sloop KW, Bhanot S. (2005). Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism. Diabetes 54: 1846-1853.
8. Cameron AJ, Shaw JE, Zimmet PZ. (2004). The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am 33: 351-375.
9. Zimmet P, Alberti KG, Shaw J. (2001). Global and societal implications of the diabetes epidemic. Nature 414:782-87.
10. Eckel RH, Grundy SM, Zimmet PZ. (2005). The metabolic Syndrome. Lancet 365: 1415-1428.
11. Andrew R, Gale CR, Walker BR, Seckl JR, Martyn CN. (2002). Glucocorticoid metabolism and the metabolic syndrome: associations in an elderly cohort. Exp Clin Endocrinol Diabetes 110 (6): 284-290.
12. Rosmond R, Dallman MF, Bjorntorp P. (1998). Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab 83 (6): 1853-1859.
13. Walker BR, Phillips DI, Noon JP, Panarelli M, Andrew R, Edwards HV, Holton DW, Secld JR, Webb DJ, Watt GC. (1998). Increased glucocorticoid activity in men with cardiovascular risk factors. Hypertension 31 (4): 891-895.
14. Filipovsky J, Ducimetiere P, Eschwege E, Richard JL, Rossein G, Claude JR. (1996). The relationship of blood pressure with glucose, insulin, heart hate, free fatty acids and plasma cortisol levels according to degree of obesity in meddle-aged men. J Hypertens 14 (2): 229-235.
15. Morton NM, Holmes MC, Fievet C. (2001). Improved lipid and lipoprotein profile, hepatic insulin sensitivity, and glucose tolerance in 11beta-hydroxysteroid dehydrogenase type 1 null mice. J Biol Chem 276: 41293-300.
16. Delbende C, Delarue C, Lefebvre H, Bunel DT, Szafarczyk A, Mocaer E, Kamoun A, Jegou S, Vaudry H. (1992). Glucocorticoid, transmitters and stress. Br J Psychiatry Suppl 160 (15): 24-35.
17. Walker EA, Stewart PM. (2003). 11ß-hydroxisteroid dehydrogenase: unexpected connections. Trends Endocrinol Metab 14 (7): 334-339.
18. Weiser JN, Do YS, Feldman D. (1979). Synthesis and secretion of corticosteroid-binding globulin by rat liver. A source of heterogeneity of hepatic corticosteroid-binders. J Clin Invest 63 (3): 461-467.
19. Grasa MM, Cabot C, Balada F, Virgili J, Sanchis D, Monserrat C, Fernandez-Lopez JA, Remesar X, Alemany M. (1998). Corticosterone binding to tissues of adrenolectomized lean and obese Zucker rats. Horm Metab Res 30 (12): 699-704.
20. Whorwood CB, Donovan SJ, Flanagan D, Phillips DL, Byrne CD. (2002). Increased glucocorticoid receptor expression in human skeletal muscle cells may contribute to the pathogenesis of the metabolic syndrome. Diabetes 51: 1066-1075.
21. Reynolds RM, Walker BR. (2003). Human insulin resistance: the role of glucocorticoids. Diabetes Obes Metab 5: 5-12.
22. Freedman MR, Horwitz BA, Stem JS. (1986). Effect of adrenolectomy and glucocorticoid replacement on development of obesity. Am J Physiol 250: R595-R607.
23. Darmaun D, Mathews DE, Bier DM. (1988). Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production. Am J Physiol 255: 366-373.
24. Hasselgren PO, Fisher JE. (1999). Counter-regulatory hormones and mechanisms in amino acid metabolism with special reference to the catabolic response in skeletam muscle. Curr Opin Clin Nutr Metab Care 2: 9-14.
25. Shah, OJ, Anthony JC, Kimball SR, Jefferson LS. (2005). Glucocorticoids oppose translational control by leucine in skeletal muscle. Am J Physiol Endocrinol Metab 279: E1185-E1190.
26. Ma K, Mallidis C, Bhasin S, Mahabadi V, Artaza J, Gonzáles-Cadavid N. (2003). Glucocorticoid-induced skeletal muscle atrophy in associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 285: 363-371.
27. Weinstein SP, Paquin T, Pritsker A, Haber RS. (1995). Glucocorticoid-induced insulin resistance: dexametasone inhibits the activation of glucose transport in rat skeletal muscle by both insulin- and non insulin-related stimuli. Diabetes 44: 441-445.
28. Ong JM, Simsolo RB, Saghizadeh M, Goers JW, Kern PA. (1995). Effects of exercise training and feeding on lipoprotein lipase gene expression in adipose tissue, heart, and skeletal muscle of the rat. Metabolism 44: 1596-1605.
29. Vestgaard H, Bratholm P, Christensen NJ. (2001). Increments in insulin sensitivity during intensive treatment are closely correlated with decrements in glucocorticoid recptor mRNA in skeletal muscle from patients with type II diabetes. Clin Sci 101: 533-540.
30. Schneiter P, Tappy L. (1998). Kinetics of dexamethasone-induced alterations of glucose metabolism in health humans. Am J Physiol 275: E806-E813.
31. Stojanovska L, Rosella G, Proietto J. (1990). Evolution of dexamethasone-induced insulin resistance in rats. Am J Physiol 258: E748-756.
32. Pauli JR, Gomes RJ, Luciano E. (in press). Hipothalamy-pituitary axis: effects of physical training in rats administered with dexamethasone. Neurologia.
33. Friedman JE, Yun JS, Patel YM, Mcgrane MM, Hanson RW. (1993). Glucocorticoid regulate the induction of phosphoenolpyruvate carboxykinase (GTP) gene transcription during dibetes. J Biol. Chem 268 (17): 12952-12957.
34. Argaud D, Zhang Q, Pan W, Maitra S, Pilkis SJ, Lange AJ. (1996). Regulation of rat liver glucose-6-phosphatase gene expression in different nutritional and hormomal states: gene structure and 5’-flanking sequence. Diabetes 45 (11): 1563-1571.
35. Allan EH, Titheradge MA. (1984). Effect of treatment of rats with dexamethasone in vivo on gluconeogenesis and metabolite compartmentation in susequently isolated hepatocytes. Biochem J 219: 117-123.
36. Lima JG, Nóbrega LHC, Nóbrega MLC, Rodrigues Jr AB, Pereira AFF. (2002). Supressão hipotálamo-hipófise-adrenal e risco de insuficiência adrenal secundária ao uso de dexametasona nasal. Arq Brás Endocrinol Metab 46 (2): 193-196.
37. Wake DJ, Rask E, Livingstone DE, Sodeberg S, Olsson T, Walker BR. (2003). Local and systemic impact of transcriptional up-regulation of 11ß-hydroxysteroid dehydrogenase type 1 in adipose tissue in human obesity. J Clin Endocrinol Metab 88 (8): 3983-3988.
38. Kershaw EE, Morton NM, Dhillon H, Ramage L, Seekl JR, Flier JS. (2005). Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity. Diabetes 54:1023-1031.
39. Oda N, Nakai A, Mokuno T, Sawai Y, Nishida Y, Mano T, Asano K, Itoh Y, Kotake M, Kato S, Masunaga R, Iwase K, Tsujimura T, Itoh M, Kawabe T, Nagasaka A. (1995). Dexamethasone-induced changes in glucose transporter 4 in rat heart muscle, skeletal muscle and adipocytes. Eur J Endocrinol 133 (1): 121-126.
40. Sakoda H, Ogihara T, Anai M, Funaki M, Inukai K, Katagiri H, Fukushima Y, Onishi Y, Ono H, Fujishiro M, Kikuchi M, Oka Y, Asano T. (2000). Dexametasone-induced insulin resistance in 3T3-L1 adipocytes is due to inhibition of glucose transport rather than signal transduction. Diabetes 49: 1700-1708.
41. Carvalho CRO, Saad MJA. (2002). Resistência à insulina induzida por glicocorticóides: investigação de mecanismos moleculares. Arq Brás Endocrinol Metab 42 (1): 13-21.
42. Dimitriads G, Leighton B, Parry-Billings M, Sasson S, Young M, Krause U, Bevan S, Piva T, Wegener G, Newsholme EA. (1997). Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle. Biochem J 321: 707-712.
43. Grunfeld C, Jones DS. (1986). Glucocorticoid-induced insulin resistance in vitro: inhibition of insulin-stimulated methylaminoisobutyric acid uptake. Horm Metab Res 18 (3): 149-152.
44. Ekstrand A, Saloranta C, Ahonen J, Gronhagen-Riska C, Groop LC. (1992). Reversal of steroid-induced insulin resistance by a nicotinic-acid derivative in man. Metabolism 41 (7): 692-697.
45. Lambillote C, Gilon P, Henquin JC. (1997). Direct glucocortioid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J Clin Invest 99 (3): 414-423.
46. Hollingdal M, Juhl CB, Dall R, Sturis J, Veldhuis JD, Schmitz O, Porksen N. (2002). Glucocorticoid induced insulin resistance impairs basal but not glucose entrained high-frequency insulin pulsatility in humans. Diabetologia 45 (1): 49-55.
47. Lloyde-Macgilp SA, Nelson SM, Florin M, Lo M, McKinnell J, Sassard J, Kenyon CJ. (1999). 11ß-hydroxysteroid dehydrogenase and corticosteroid action in lyon hipertensive rats. Hypertension 34 (5): 1123-1128.
48. Fletcher AJW, McGarrigle HHG, Edwards CMB, Fowden AL, Giussani DA. (2002). Effects of low dose dexamethasone treatment on basal cardiovascular and endocrine function in fetal sheep during late gestation. J Physiol 542 (2): 649-660.
49. Severino C, Brizzi P, Solinas A, Secchi G, Maioli M, Tonolo G. (2002). Low-dose dexamethasone in the rat: a model to study insulin resistance. Am J Physiol 283: E367-373.
50. Viaro F, Nobre F, Evora PRB. (2000). Expressão das óxido nítrico sintetases na fisiopatologia das doenças cardovasculares. Arq Brás Cardiol 74 (4): 365-379.
51. Wang M. (2005). The role of glucocorticoid action in the pathophysiology of the metabolic syndrome. Nutr Metab 2 (3): 1-14.
52. Pauli JR, Souza LS, Gobbi S, Zago AS. (2005). Efeitos de um programa de treinamento físico personalizado sobre a aptidão funcional, composição corporal e bioquímica sanguínea em idosas. Motricidade 1 (2): 116-125.
53. Pauli JR, Souza LS, Zago AS, Gobbi S. (2004). The effects of a physical activity program in a 12-year period, in older people. J Aging Phys Activ 12 (3): 452-453.
54. Boulé NG, Kenny GP, Haddad E, Wells GA, Sigal RJ. (2003). Metaanalysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia 46: 1071-1081.
55. Guimarães GV, Ciolac EM. (2004). Síndrome metabólica: abordagem do educador físico. Rev Soc Cardiol Estado de São Paulo 14 (4): 130-142.
56. Ciolac EM, Guimarães GV. (2004). Exercício físico e síndrome metabólica. Rev Bras Med Esporte 10 (4): 319-324.
57. Hargreaves M, Cameron-Smith D. (2002). Exercise, diet, and skeletal muscle gene expression. Med Sci Sports Exerc 34 (9): 1505-1508.
58. Zierath JR, Krook A, Walberg-Henriksson H. (2000). Insulin action and insulin resistance in humans skeletal muscle. Diabetologia 43: 821-835.
59. Nesher R, Karl IE, Kipnis DM. (1985). Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am J Physiol Cell Physiol 249:C226-C232.
60. Azevedo JL, Carey JO, Pories WJ, Morris PG, Dohm GL. (1995). Hypoxia stimulates glucose transport in insulin-resistant human skeletal muscle. Diabetes 44: 695-698.
61. Balon TW, Nadler JL. (1997). Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol 82: 359-363.
62. Mann WR, Villauer EB, Barilla D, Battle B, Dunning BE, Balkan B. (1995). Effects of bradykinin on glucose metabolism in isolated rat soleus muscle and on blood glucose levels in ob/ob mice. Diabetes 44: 133A.
63. Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW. (1999). 5’ AMP-activated protein kinase activation causes GLUT4 translocation in skeletam muscle. Diabetes 48: 1667-1671.
64. Luciano E, Carneiro EM, Carvalho CRO, Carvalheira JBC, Perez SB, Reis MAB, Saad MJA, Boschero AC, Velloso LA. (2002). Endurance training improves responsivenes to insulin and modulates insulin signal transduction through the phosphatidylinositol 3-Kinase/ Akt-1 pathway. Eur J Endocrinol 12 (2): 202-209.
65. Gomes RJ, Caetano FC, Mello MAR, Luciano E. (2005). Effect of Chronic Exercise on Growth Factors in Diabetic Rats. Journal of Exercise Physiology 8 (2): 16-23.
66. Pauli JR, Rodrigues Júnior JC, Antunes DFR, Luciano E. (2003). Treinamento físico e administração de insulina: efeitos sobre o metabolismo de carboidratos e proteínas. Motriz 9 (2): 71-74.
67. Diabetes Prevention Program Research Group. (2002). Reduction of the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346: 393-403.
68. Kump DS, Booth FW. (2005). Alterations in insulin receptor signalling in the rat epitrochlearis muscle upon cessation of voluntary exercise. J Physiol 562 (3): 829-838.
69. Booth FW, Chakravarthy MV, Spangenburg EE. (2002). Exercise and gene expression: physiological regulation of the human genome through activity. J Physiol 543 (2): 399-411.
70. Mikines KJ, Sonne B, Farrel PA. (1988). Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol 254: E248-259.
71. Stubbs CO, Lee JA. (2004). The obesity epidemic: both energy intake and physical activity contribute. MJA 181 (9): 489-491.
72. Hardman AE. (1996). Exercise in the prevention of atherosclerotic, metabolic and hypertensive diseases: a review. J Sports Sci 14: 201-218.
73. Francischi RP, Pereira LO, Lancha Júnior AH. (2001). Exercício, comportamento alimentar e obesidade: revisão dos efeitos sobre a composição corporal e parâmetros metabólicos. Rev Paul Educ Fís 15 (2):117-140.
74. Mensink M, Blaak EE, Vidal H, Brun TWA, Glatz JFC, Saris WHM. (2003). Lifestyle changes and lipid metabolism gene expression and protein content in skeletal muscle of subjects with impaired glucose tolerance. Diabetologia 46: 1082-1089.
75. Seip RL, Semenkovich CF. (1998). Skeletal muscle lipoprotein lipase; molecular regulation and physiological effects in relation to exercise. Exerc Sport Sci Rev 26: 191-218.
76. French AS, Story M, Jeffery RW. (2001). Environmental influences on eating and physical activity. Annu Rev Public Health 22: 309-335.
77. Bouchard C, Shephard RJ, Stephens T. (eds). (1994). Physical activity, fitness and health: Internacional proceeedings and consensus statement. Champaign: Human Kinetics.
78. Arroll B, Beaglehole R. (1992). Does physical activity lower blood pressure? A critical review of the clinical trials. Journal of Clinical Epidemiology 45: 439-447.
79. Shen W, Zhang X, Wolin MS, Sessa W, Hintze TH. (1995). Nitric oxide production and NO synthase gene expression contribute to vascular regulation during exercise. Med Sci Sports Exerc 8: 1125-1134.
80. Kingwell BA. (2000). Nitric-oxide-mediated regulation during exercise: effects of training in health and cardivascular disease. FASEB J 14: 1685-1696.
81. Tanabe T, Maeda S, Miyauchi T, Iemitsu T, Takanashi M, Irukayama-Tomobe Y, Yokota T, Ohmori H, Matsuda M. (2002). Exercise training improves ageing-induced decreased in eNOS expression of the aorta. Acta Physiol Scand 178 (1): 3-10.
82. Wojtaszewski JFP, Birk JB, Frosig C, Holten M, Pilegaard H, Dela F. (2005). 5’AMP activated protein kinase expression in human skeletam muscle: effects of strenght training and type 2 diabetes. J. Physiol 564 (2): 563-573.
83. Mcgee SL, Howlett KF, Starkie RL Cameron-mith D, Kemp BE, Hargraves M. (2003). Exercise increases nuclear AMPK a2 in numan skeletal muscle. Diabetes 52: 926-928.
84. Hutber CA, Hardie DG, Winder WW. (1997). Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP’ activated protein kinase. Am. J. Physiol 272 (2): E262-266.
85. Hayashi T; Hirshman MF; Fujii N; Habinowski SA; Witters LA; Goodyear LJ. (2000). Metabolic stress and altered glucose transport activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 49 (4): 527-531.
86. Stephens TJ; Chen ZP; Canny BJ; Michell BJ; Kemp BE; McConell GK. (2002). Progressive increases in human skeletal muscle AMPK alpha 2 activity and ACC phosphorylation during exercise. Am J Physiol Endocrinol Metab 282 (3): E688–E694.
87. Musi N, Yu H, Goodyear LJ. (2002). AMP-activated protein kinase regulation and action in skeletal muscle during exercise. Biochemical Society Transactions 31: 191-195.
88. Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO. (2000). Activation of AMP-activated protein kinase increases mitochondrial enzymes in sckeletal muscle. J Appl Physiol 88: 2219-2226.
89. Musi N, Fujii N, Hirshiman MF. (2001). AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes 50: 921-927.
90. Lau P, Bailey P, Dowhan DH, Muscai GE. (1999). Exogenous expression of a dominant negative RORRalpha 1 vector in muscle cells impairs differentiation: RORalpha 1 directly interacts with p300 and myoD. Nucleic Acids Res 27: 411-420.
91. Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, Ikeda Y. (2003). Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acd Sci 100: 15924-15929.
92. Henever AL, He W, Barak Y, Le J, Bandyopadhyay G, Olson P. (2003). Muscle-specific Pparg deletion causes insulin resistance. Nat Med 9: 1491-1497.
93. Muscat GE, Wagner BL, Hou J, Tangirala RK, Bischoff E, Rohde P. (2002). Regulation of cholesterol homeostasis and lipid metabolism in skeletal muscle by liver X receptor. J Biol Chem 277: 40722-40728.
94. Muio DM, Way JM, Tanner CJ, Winegar DA, Kliewer SA, Houmard JA. (2002). Peroxisome proliferator-activatred receptor-alpha regulates fatty acid utilization in primary human skeletal muscle cells. Diabetes 51: 901-909.
95. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR. (2004). Regulation of muscle fiber type and running endurance by PPARdelta. Plos Biol 2:e294.
CORRESPONDÊNCIA
José Rodrigo Pauli
Rua XV de Novembro, 1701, centro
13400-370 Piracicaba, São Paulo
Brasil