SciELO - Scientific Electronic Library Online

 
vol.35 issue3Polynomial Method for the Calculation of Corrosion Parameters in a System with Mixed Control author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Portugaliae Electrochimica Acta

Print version ISSN 0872-1904

Abstract

ONYEACHU, B.I. et al. Ni Corrosion Product Layer During Immersion in a 3.5% NaCl Solution: Electrochemical and XPS Characterization. Port. Electrochim. Acta [online]. 2017, vol.35, n.3, pp.127-136. ISSN 0872-1904.  https://doi.org/10.4152/pea.201703127.

Long term wet corrosion resistance of metals depends on the stability of their corrosion product layer. With immersion corrosion tests, such stability can be predicted. EIS and potentiodynamic polarization were complemented with XPS to investigate the characteristics of Ni corrosion product layer formed after 1 hr. and 72 hr. immersion in 3.5% NaCl solution. Two time constants with decreasing Nyquist semi-circle size and phase angle maxima, based on EIS characterization during the immersion times, indicated the formation of an increasingly porous and less adherent corrosion product layer. The product formation shifted the Ni corrosion potential more negatively and increased cathodic and anodic current densities, during potentiodynamic polarization. XPS characterization suggested that a rapid nucleation of NiO could increase H2O adsorption, subsequently triggering the formation of different forms of Ni(OH)2 in the corrosion product layer. Consequently, the corrosion resistance of the Ni coating decreased after 72 hr. immersion in 3.5% NaCl solution.

Keywords : Ni coating; XPS; EIS; NiO; immersion test; corrosion product layer.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License