SciELO - Scientific Electronic Library Online

 
vol.39 número2Inhibition efficiency of copper corrosion in a neutral chloride solution by barbituric and thiobarbituric acidsAnti-corrosive properties and quantum chemical studies of (Benzoxazol) derivatives on mild steel in HCl (1 M) índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Portugaliae Electrochimica Acta

versão impressa ISSN 0872-1904

Resumo

JIMOH, Ibrahim  e  USMAN, Bishir. Corrosion Inhibition Potential of Ethanol Extract of Acacia nilotica Leaves on Mild Steel in an Acidic Medium. Port. Electrochim. Acta [online]. 2021, vol.39, n.2, pp.105-128.  Epub 30-Abr-2021. ISSN 0872-1904.  https://doi.org/10.4152/pea.202102105.

The corrosion inhibition effect of ethanol extract of Acacia nilotica leaves (ANLE) on mild steel in 0.1 M H2SO4, containing 0.1-0.5 g/L, has been studied using weight loss, Potentiodynamic Polarization (PDP), Fourier Transforms Infra-Red (FTIR) spectroscopy, UV-visible spectroscopy, High-Performance Liquid Chromatography (HPLC) and Scanning Electron Microscopy (SEM) methods. The results from weight loss and PDP show that the inhibition efficiency depends on the concentration of the plant extract, as well as on the time of exposure of the mild steel samples in H2SO4 solutions. The optimum inhibition efficiencies of the extract obtained from weight loss and potentiodynamic measurements were found to be 87.57% and 61.85%, respectively. Thermodynamic parameters, such as Ea, ΔH, ΔG and ΔS, were evaluated at 0.5 g/L, and the results were found to be -78.54 kJ/mol, 74.66 kJ/mol., -17.92 kJ/mol and -90.59 kJ/mol, respectively. From the calculated values of activation energy and free energy of adsorption, and from the trend in the variation of inhibition efficiency with temperature, the inhibitor mechanism of adsorption was found to be physical adsorption, exothermic, spontaneous, being best described by Langmuir adsorption model, because the regression coefficients (R2) values calculated from the plots were closest to unity, confirming a highest degree of linearity. Mild steel surface morphology, in ANLE presence and absence, was studied using SEM. FTIR spectroscopy and UV-visible spectroscopy analyses were used to confirm the adsorption process onto the metal surface. Spectra analysis obtained from FTIR study indicated that ANLE was adsorbed onto the mild steel surface via C-O and N=O functional groups. HPLC was also used to find the main component responsible for inhibition, at 5.990 min, which was Catechin. The obtained results revealed that ANLE acts as a good inhibitor and could serve as an effective mild steel corrosion inhibitor in a 0.1 M H2SO4 solution.

Palavras-chave : Acacia nilotica; corrosion; mild steel; tetraoxosulphate (VI) acid.

        · texto em Inglês     · Inglês ( pdf )