SciELO - Scientific Electronic Library Online

 
vol.30 número2Sistema de porosidade do solo numa topossequência Luvissolo-Solonetz no Sul de PortugalModelação da dinâmica da água e dos sais num Aluviossolo regado com águas de diferente qualidade: ensaio de validação do modelo HYDRUS-1D com observações em monólitos índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista de Ciências Agrárias

versão impressa ISSN 0871-018X

Rev. de Ciências Agrárias v.30 n.2 Lisboa jul. 2007

 

Influência da temperatura e do teor de humidade do solo na área foliar e acumulação de matéria seca durante o estabelecimento da ervilha, do milho e do girassol

Influence of temperature and soil moisture on leaf area and dry matter accumulation during establishment of pea, maize and sunflower

 

J. A. Andrade1 & F. G. Abreu2

 

RESUMO

O crescimento foliar e a acumulação de matéria seca durante o estabelecimento da ervilha (Pisum sativum L., var. Ballet), do milho (Zea mays L., var. Lorena) e do girassol (Helianthus annuus L., var. Flora-sol) foram estudados em função da temperatura e do teor de água num solo Pmg(Évora) e num Cb (Lisboa), entre Junho de 1995 e Novembro de 1996. Mediu-se a temperatura do solo a 2 e 4 cm de profundidade, a temperatura do ar e a humidade do solo. A área foliar das plântulas foi estimada a partir de medições do comprimento e da largura de cada folha. A acumulação de matéria seca foi avaliada pela pesagem da parte aérea das plântulas após secagem em estufa. Os dados foram analisados com base no conceito de tempo térmico.

Para teores de humidade superiores a 50% da capacidade utilizável de cada solo, a área foliar durante o estabelecimento da ervilha e do milho aumentou linearmente com a temperatura acumulada, enquanto que a do girassol aumentou exponencialmente durante o mesmo período. A relação entre a acumulação de matéria seca de qualquer das culturas e a temperatura acumulada foi exponencial. O tipo de solo influenciou significativamente o “início da expansão foliar” da ervilha e do girassol, a “taxa térmica de expansão foliar” do milho e a acumulação de matéria seca da ervilha e do milho. O “início da expansão foliar” da ervilha ocorreu mais cedo no solo Cb enquanto que o do girassol ocorreu mais cedo no solo Pmg. A expansão foliar do milho foi mais rápida no solo Pmg. A acumulação de matéria seca da ervilha foi mais rápida no solo Cb, enquanto que a do girassol foi mais rápida no solo Pmg. Em ambos os solos, baixos teores de humidade afectaram negativamente a expansão da área foliar e a acumulação de matéria seca.

ABSTRACT

Leaf area expansion and accumulation of dry matter during the establishment of pea (Pisum sativum L., var. Ballet), maize (Zea mays L., var. Lorena) and sunflower (Helianthus annuus L., var. Florasol) were studied at different temperatures and soil moisture contents in a Vertisol (Lisboa)and a Luvisol (Évora) from June 1995 to November 1996. Measurements were made of soil temperature at 2 and 4 cm depth, air temperature and soil water content. Leaf area per plant was estimated from measurements of the length and width of each leaf. Above ground seedling dry matter was weighed after oven drying. Data analysis was based on the thermal time concept.

For water contents above 50% of the available capacity of each soil, leaf area of pea and maize increased linearly with accumulated temperature while that of sunflower increased exponentially. Dry matter of all crops increased exponentially with accumulated temperature. Significant differences between the two types of soil were found on the “initiation of leaf area expansion” of pea and sunflower, on the “thermal-rate for leaf area expansion” of maize and on the dry matter accumulation of pea and maize seedlings. The “initiation of leaf expansion” of pea occurred earlier in soil Cb while that of sunflower occurred earlier in soil Pmg. Leaf area expansion of maize was faster in soil Pmg. Dry matter accumulation of pea was faster in soil Cb while that of sunflower was faster in soil Pmg. In both soils, low soil water contents reduced leaf area expansion and dry matter accumulation of the crops.

 

 

Texto completo disponível apenas em PDF.

Full text only available in PDF format.

 

 

REFERÊNCIAS BIBLIOGRÁFICAS

Abreu, F.G. 1987. Influence of Atmospheric Saturation Deficit on Early Growth of Groundnut. Ph. D. Thesis. Nottingham University, Nottingham, United Kingdom.         [ Links ]

Abreu, F.G. & Clark, J.A. 1993. Groundnut seedling emergence in relation to thermal-time and soil water. Anais do Instituto Superior de Agronomia, 43: 219-232.

Andrade, J. 2001. Temperatura do Solo (e Análise de Fourier), Humidade do Solo e Desenvolvimento Inicial de Várias Culturas em Solos Pmg e Cb. Ph. D. Thesis. Universidade de Évora, Évora.

Andrade, J. & Abreu, F.G. 2005. Leaf area expansion and dry matter accumulation during establishment of broad bean and sorghum at different temperatures and soil water contents in two types of soil in Mediterranean Portugal. Annalen der Meteorologie, 41 (1): 46-49.

Beauchamp, E.G. & Lathwell, D.J. 1967. Effect of changes in root zone temperature on the subsequent growth and development of young corn plants. Agronomy Journal, 59: 189-193.

Bewley, J.D. & Black, M. 1994. Seeds. Physiology of Development and Germination. (2ed.), Plenum Press, New York and London, USA.

Bollero, G.A, Bullock, D.G. & Hollinger, S.E. 1996. Soil temperature and planting date effects on corn yield, leaf area, and plant development. Agronomy Journal, 88: 385-390.

Bresson, L.M. 1995. A review of physical management for crusting control in Australian cropping systems research opportunities. Austr. J. Soil Res., 33:195-209.

Cao,W.& Moss, D.N. 1989. Temperature effect on leaf emergence and phyllochron in wheat and barley. Crop Scienc 29: 1018-1021.

Craufurd, P.Q., Ellis, R.H., Summerfield, R.J. & Menin, L. 1996. Development in cowpea (Vigna unguiculata). I. The influence of temperature on seed germination and seedling emergence. Experimental Agriculture, 32: 1-12.

Draper, N.R. & Smith, H. 1981. Applied Regression Analysis. (2ed). J. Wiley & Sons, New York, USA.

Eitzinger, J., Trnka, M., Hosch, J., Zalud, Z. & Dubrovsky, M. 2004. Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil condition. Ecological Modelling, 17: 223-246.

Garcia-Huidobro, J., Monteith, J.L. & Squire, G.R. 1982a. Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H). I. Constant Temperature. Journal of Experimental Botany, 33: 288-296.

Goudriaan, J. & Monteith, J.L. 1990. A mathematical function for crop growth based on light interception and leaf area expansion. Annals of Botany, 66, 695-701.

Kanemasu, E.T., Bark, D.L. & Chin Choy, E. 1975. Effect of soil temperature on sorghum emergence. Plant and Soil, 43: 411-417.

Lee, J.H., Goudriaan, J. & Challa, H. 2003. Using the expolinear growth equation for modelling crop growth in year-round cut chrysanthemum. Annals of Botany, 92: 697-708.

Leong, S.K. & Ong, C.K. 1983. The influence of temperature and soil water deficit on the development and morphology of groundnut (Arachis hypogaea L.). Journal of Experimental Botany, 34: 1551-1561.

Marshall, B & Squire, G.R. 1996. Nonlinearity in rate-temperature relations of germination in oilseed rape. Journal of Experimental Botany, 47: 1369-1375.

Mohamed, H. A., Clark, J. L. & Ong, C. K. 1988. Genotypic differences in the temperature responses of tropical crops. II. Seedling emergence and leaf growth of groundnut (Arachis hypogea L.) and pearl millet (Pennisetum typhoides S. & H). Journal of Experimental Botany, 39: 1129-1135.

Mohotti, A.J. & Lawlor, D.W. 2002. Diurnal variation of photosynthesis and photoinhibition in tea: effects of irradiance and nitrogen supply during growth in the field. Journal of Experimental Botany, 367: 313-322.

Monteith, J.L. 1977. Climate. In Alvim, P.T. & Kozlowsky, T.T. (eds) Ecophysiology of Tropical Crops, pp. 1-25. Academic Press, New York, USA.

Nelson, L.E. 1967. Effect of root temperature variation on growth and transpiration of cotton (Gossypium L.) seedlings. Agronomy Journal, 59: 391-395.

Ong, C.K. 1983. Response to temperature in a stand of pearl millet (Pennisetum typhoides S. & H). I. Vegetative development. Journal of Experimental Botany, 34: 322-336.

Richards, S.J., Hagan, R.M. & McCalla, T.M. 1952. Soil temperature and plant growth. In B.T.Shaw (ed) Soil Physical Conditions and Plant Growth. Vol II, Agronomy Monographs 2, pp. 303-480. Academic Press, New York, USA.

Santos, F. 2000. Alterações Climáticas em Portugal. Adaptação e Mitigação. Projecto SIAM <http://www.oal.pt/~santon//seminarios2000/santos/santos.html >

Squire, G. R. 1989. Response to temperature in a stand of pearl millet.10. Partition of assimilate. Journal of Experimental Botany, 40: 1391-1398.

Webb, D.M., Smith, C.W. & Schulz-Schaeffer, J. 1987. Amaranth seedling emergence as affected by seeding depth and temperature on the thermogradient plate. Agronomy Journal, 79: 23-36.

 

1 Departamento de Geociências, Universidade de Évora- Colégio Luís António Verney, Rua Romão Ramalho nº59, 7000-671 Évora, Portugal, Tel 266745300, Fax 26674539, e-mail: zalex@uevora.pt

2 Departamento de Ciências do Ambiente, Instituto Superior de Agronomia, Tapada da Ajuda, 1349017 Lisboa, Portugal. e-mail: fgabreu@isa.utl.pt

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons