SciELO - Scientific Electronic Library Online

 
vol.31 número2Produção de cebola de dias curtos no Alentejo. Influência da adubação localizadaAparecimento de plantas espontâneas com e sem perturbação do solo em condições mediterrânicas índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista de Ciências Agrárias

versão impressa ISSN 0871-018X

Rev. de Ciências Agrárias v.31 n.2 Lisboa dez. 2008

 

Arabidopsis thaliana: uma pequena planta um grande papel

Arabidopsis thaliana: a small plant a big role

 

Carla Andréa Delatorre1, Adriano Alves da Silva2

 

 

RESUMO

Arabidopsis thaliana é uma das espécies mais utilizadas na pesquisa científica atualmente. Apesar de não apresentar importância econômica direta, esta espécie é o foco de pesquisas na área da genética, bioquímica e fisiologia. O número de trabalhos publicados sobre a mesma aumentou significativamente após o seqüenciamento de seu genoma. Apesar do grande número de estudos existe ainda muita desinformação sobre qual o seu verdadeiro papel na pesquisa científica de espécies cultivadas e de que maneira o avanço no conhecimento adquirido com A. thaliana pode auxiliar o desenvolvimento de cultivares cada vez mais resistentes, adaptados e produtivos. Os objetivos deste trabalho são discutir as razões do uso da A. thaliana como espécie modelo e a aplicabilidade deste modelo no estudo de espécies cultivadas.

Palavras-chave: Biotecnologia, estresses a fatores abióticos, melhoramento de plantas e organismo modelo.

 

 

ABSTRACT

Arabidopsis thaliana has been the species of choice for scientific research. Despite its lack of economic importance, it has been the focus of genetic, biochemical and physiological research worldwide. The number of published articles about arabidopsis has increased substantially after its genome was sequenced, and outgrew the number of articles related to economically important species. Despite the great number of studies involving arabidopsis, there is much disinformation about the actual role of this species in crop scientific research, as well as how the breakthroughs in arabidopsis research may help to develop more adapted and productive crops. This work aims to discuss reasons for using A. thaliana as a model species and the feasibility of this model for crop studies.

Key-words: Biotechnology, model organism, abiotic stress, plant breeding.

 

 

Texto completo disponível apenas em PDF.

Full text only available in PDF format.

 

 

REFERÊNCIAS BIBLIOGRÁFICAS

 

Adams, M.D. et al. (2000) - The genome sequence of Drosophila melanogaster. Science 287, 5461, 2185-2195.         [ Links ]

Alonso-Blanco, C. & Koornneef, M. (2000) -Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Science 1, 5: 22–29.

Apse, M.P. et al. (1999) - Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 5431, 285: 1256–1258.

Arabidopsis Home Acesso em 05 de Janeiro, 2006. Online. Disponível em http://www.arabidopsis.org/info/aboutarabidopsis.jsp

Araki, T. (2001) - Transition from vegetative to reproductive phase. Current Opinion in Plant Biology 1, 4, 63-68.

Bevan, M. & Walsh, S. (2006) -The Arabidopsis genome: a foundation for plant research. Genome Research 12, 15: 16321642.

Blázquez, M.A. et al. (1998) -Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. The Plant Cell 5, 10: 791-800.

Blázquez, M.A. (2000) -Flower development pathways. Journal of Cell Science 20, 113: 3547-3548.

Bonetti, L.P. (2005) - Biotecnologia: Transgênicos contra fatores abióticos. Acesso em 05 de Janeiro, 2006. Online. Disponível em http://www.cotrisoja.com.br/artigos/art-2005-07-04.html.

Borém, A. & Vieira, M.L.C. (2005) - Glossário de biotecnologia. Universidade Federal de Viçosa, Viçosa, 183p.

Boyes, D.C. et al. (2001) -Growth stage– based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. The Plant Cell 7, 13: 1499-1510.

Brenner, S. (1974) - Genetics of Caenorhabditis elegans. Genetics 1, 77, 71-94.

Chen, D. et al. (2000) -Conditional identification of phosphate-starvation-response mutants in Arabidopsis thaliana. Planta 1, 211: 13-22.

Chen, M.J. et al. (2006) -Delayed flowering, an Arabidopsis gene that acts in the autonomous flowering promotion pathway and is required for normal development. Journal of Integrative Plant Biology 1, 48: 27-34.

Chujo, A. et al. (2003) - Partial Conservation of LFY Function between Rice and Arabidopsis. Plant and Cell Physiology 12, 44: 1311-1319.

Corbesier, L. et al. (1996) - Design in Arabidopsis thaliana of a synchronous system of floral induction by one long day. The Plant Journal 6, 9: 947-952.

Delatorre, C.A. (2002) -Phosphate-deficiency response: understanding the signaling pathway. Dissertação de Doutoramento, Universidade da Califórnia, Davis, 158 pp.

Delatorre, C. A. et al. (2004) - Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. The Plant Journal 6, 37: 801-814.

Devos, K.M. & Gale, M.D. (2000) -Genome relationships: The grass model in current research. The Plant Cell 5, 12: 637–646.

Dubouzet, J.G. et al. (2003) -OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. The Plant Journal 4, 33, 751–763.

Guelman, S. et al. (2006) -Host cell factor and an uncharacterized SANT domain protein are stable components of ATAC, a novel dAda2A/dGcn5-containing histone acetyltransferase complex in Drosophila. Molecular and Cellular Biology 3, 26, 871-882.

Hoffmann, M.H. (2002) -Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). Journal Biogeography 4, 29, 125–34.

Karp, P.D. et al. (2002) -The ecoCyc database. Nucleic Acids Research 1, 30, 56-58.

Kasuga, M. et al. (1999) -Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature biotechnology 3, 17, 287-291.

Kucharczyk, R. & Rytka, J. (2001) -Saccharomyces cerevisiae -a model organism for the studies on vacuolar transport. Acta Biochimica Polonica 48, 4, 1025-1042.

Labra, M. et al. (2004) -Genomic stability in Arabidopsis thaliana transgenic plants obtained by floral dip. Theoretical and Applied Genetics 109, 7, 1512-1518.

Laibach, F. (1943) -Arabidopsis thaliana (L.) Heynh. als object fur genetische und entwicklungsphysiologische untersuchungen. Botanic Archives 44, 439–455.

Larkin, P.J. & Scowcroft, W.R. (1981) - Somaclonal variation: a novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics 60, 4, 197-214.

Levy, Y.Y. & Dean, C. (1998) -Control of flowering time. Current Opinion in Plant Biology 1, 1, 49-54.

Liu, Q. et al. (1998) -Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperatureresponsive gene expression, respectively, in Arabidopsis. The Plant Cell 10, 8, 1391–1406.

Meinke, D.W. et al. (1998) - Arabidopsis thaliana: A Model Plant for Genome Analysis. Science 5389, 282, 662-682.

Meyerowitz, E.M. (2001) -Prehistory and history of Arabidopsis research. Plant Physiology 125, 1, 15-19.

Mewis, I. et al. (2005) -Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiology 138, 2, 1149-1162.

Michaels, S.D. & Amasino, R.M. (2000) -Memories of winter: vernalization and the competence to flower. Plant Cell Environment 23, 11, 1145-1153.

Mitsukawa, N. et al. (1997) -Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances growth under phosphate-limited conditions. Proceedings National Academy of Sciences USA 94, 13, 7098-7102.

Mouradov, A. et al. (2002) - Control of flowering time: interacting pathways as a basis for diversity. The Plant Cell supplement, 14, 111-130.

Oh, S.W. et al. (2006) - Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nature Genetics 38, 2, 251-257.

Pang, K.C. et al. (2006) -Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends in Genetics, 22, 1, 1-5.

Parsell, D.A. & Lindquist, S. (1993) -The function of heat-shock proteins in stress tolerance – degradation and reactivation of damaged proteins. Annual Review of Genetics 27, 1, 437-496.

Pellegrineschi, A. et al. (2004) -In quest for drought-tolerant varieties, CIMMYT shows first transgenic wheat field trials in Mexico. Acesso em 05 Janeiro, 2006. Online. Disponível em http://www.cimmyt.org/english/webp/support/news/dreb.htm.

Pineiro, M. & Coupland, G. (1998) -The control of flowering time and floral identity in Arabidopsis. Plant Physiology 117, 1: 1-8.

Ping, L. et al. (2005) - OsDREB1 gene from rice enhances cold Tolerance in Tobacco. Tsinghua Science and Technology 10, 4: 478-483.

Poirier, Y. et al. (1991) - Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiology 97, 3: 1087-1093.

Putterill, J. et al. (1995) -The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 3, 847-857.

Rédei, G.P. (1975) - Arabidopsis as a genetic tool. Annual Review of Genetics 9, 1: 111-127.

Reeves, P.H. & Coupland, G. (2000) - Response of plant development to environment control of flowering by daylenght and temperature. Current Opinion in Plant Biology 3, 1: 37-42.

Riley, M. & Labedan, B. (1997) -Protein evolution viewed through Escherichia coli protein sequences: introducing the notion of a structural segment of homology, the module. Journal of Molecular Biology 268, 5: 857-68.

Rubio, V. et al. (2001) - A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes & Development 15, 16: 2122-2133.

Samach, A. & Coupland, G. (2000) -Time measurement and control of flowering in plants. Bioessays 22, 1: 38-47.

Sánchez-Calderón, L. et al. (2006) - Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Physiology 140, 3: 879-889.

Simpson, G.C. & Dean, C. (2002) -Arabidopsis the rosetta stone of flowering time? Science 296, 5566: 285-289.

Sheldon, C.C. et al. (1999) - The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. The Plant Cell 11, 3: 445-458.

Stachel, S.E. et al. (1986) -Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells. Nature 322, 6081: 706-712.

Steller, H. (1995) -Mechanisms and genes of cellular suicide. Science 267, 5203: 1445-1449.

Sutherland, C. et al. (2001) - Saccharomyces cerevisiae - a model organism to investigate the mammalian AMP-activated protein kinase system. Yeast 18, 1: 191-191.

The Arabidopsis Genome Initiative. (2000) -Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 8692: 796-815.

The C. elegans Sequencing Consortium. (1998) - Genome sequence of the nematode C. Elegans: A platform for investigating biology. Science 282, 5396: 20122046.

Thomas, G.H. (1999) -Completing the E. coli proteome: a database of gene products characterised since the completion of the genome sequence. Bioinformatics 15, 10: 860-861.

Trull, M.C. & Deikman, J. (1998) -An Arabidopsis mutant missing one acid phosphatases isoform. Planta 206, 4: 544-550.

Yan, L. et al. (2004) - The wheat VRN2 gene is a flowering repressor downregulated by vernalization. Science 303, 5664: 16401644.

Web of sience. Acesso em 24 de abril. 2007. Online. Disponível em http://www.webofscience.com.br.

Weigel, D. & Nilsson, O. (1995) - A developmental switch sufficient for flower initiation in diverse plants. Nature 377, 6549: 495–500.

WilsoN, R.N. et al. (1992) -Gibberelin is Zhang, H. & Blumwald, E. (2001) - Transgerequired for flowering in Arabidopsis tha-nic salt-tolerant tomato plants accumulate liana under short days. Plant Physiology salt in foliage but not in fruit. Nature bio100, 1, 403-408. technology 19, 8, 765-768.

 

1 Dra, Professora Adjunto do Departamento de Plantas de Lavoura, Departamento de Plantas de Lavoura, Faculdade de Agronomia da Universidade Federal do Rio Grande do Sul -UFRGS, Caixa Postal 15100, 90001-970, Porto Alegre-RS, Brasil, E-mail: cadtorre@ufrgs.br. Autor para correspondência.

2 Doutorando do Programa de Pós-Graduação em Fitotecnia, Faculdade de Agronomia-UFRGS. Porto Alegre, RS, Brasil. E-mail: agroadriano@terra.com.br.

Recepção/Reception: 2007.08.28 aceitação/acception: 2008.04.29

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons