SciELO - Scientific Electronic Library Online

 
vol.21 número4Multistep Electrode Processes in Double Potential Step TechniquesCorrosion of Electrogalvanized Steel in 0.1 M NaCl Studied by SVET índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Portugaliae Electrochimica Acta

versión impresa ISSN 0872-1904

Port. Electrochim. Acta v.21 n.4 Coimbra  2003

 

Oligonucleotide Immobilisation on Polytyramine-Modified Electrodes Suitable for Electrochemical DNA Biosensors

 

A. Tenreiro a)*, C.M. Cordas b), L.M. Abrantes b)

a) Laboratório de Bioelectroquímica, ICAT, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749 - 016 Lisboa, Portugal

b) Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749 - 016 Lisboa, Portugal

Received 31 January 2003; accepted in revised form 31 October 2003

 

Abstract

The surface of platinum electrodes was modified by electrochemical polymerisation of tyramine to provide binding sites for covalent specific immobilisation of the nucleotide deoxyguanosine triphosphate (dGTP). The EQCM has been used to monitor the growth of polymeric films, which is clearly demonstrated by the decrease in the frequency, corresponding to a continuous mass increase.

The carbodiimide coupling reaction was used to bind the terminal 5’ phosphate groups of the dGTP to the available primary amine functions on the polymer surface. The biomolecule immobilisation process was followed by measuring simultaneously the evolution of QC-frequency and open circuit potential. Intrinsic redox signal of guanine base residues provides evidence of the dGTP grafting.

Keywords: Polytyramine; electrochemical polymerisation; EQCM; covalent immobilisation; DNA biosensor.

 

Texto completo disponível apenas em PDF.

Full text only in PDF format.

 

References

1. E. Palecek, Talanta 56 (2002) 809.        [ Links ]

2. M.I. Pividori, A. Merkoçi, S. Alegret, Biosensors. Bioelectron. 15 (2000) 291.        [ Links ]

3. M. Mascini, I. Palchetti, G. Marrazza, Fresenius J. Anal. Chem. 369 (2001) 15.        [ Links ]

4. G. Chiti, G. Marrazza, M. Mascini, Anal. Chim. Acta 427 (2001) 155.        [ Links ]

5. J. Wang, Nucleic Acids Res. 28 (2000) 3011.        [ Links ]

6. T. Vo-Dinh, B. Cullum, Fresenius J. Anal. Chem. 366 (2000) 540.        [ Links ]

7. N. Lassalle, P. Mailley, E. Vieil, T. Livache, A. Roget, J.P. Correia, L.M. Abrantes, J. Electroanal. Chem. 509 (2001) 48.        [ Links ]

8. N. Lassalle, E. Vieil, J.P. Correia, L.M. Abrantes, Biosensors. Bioelectron. 16 (2001) 295.        [ Links ]

9. T.-Y. Lee, Y.-Bo Shim, Anal. Chem. 73 (2001) 5629.        [ Links ]

10. S. Cosnier, Biosensors. Bioelectron 14 (1999) 443.        [ Links ]

11. C.M. Cordas, A. Tenreiro, L.M. Abrantes, in Nanostructured Materials and Coatings in Biomedical and Sensor Applications, Y.G. Gototsi, I.V. Uvarova, Eds., Kluwer Academic Publishers, 2003. p. 371.        [ Links ]

12. I. Tsuji, H. Eguchi, K. Yasukouchi, M. Unoki, I. Taniguchi, Biosensors. Bioelectron. 5 (1990) 87.        [ Links ]

13. M. Situmorang, J.J. Gooding, D.B. Hibbert, Anal. Chim. Acta 394 (1999) 211.        [ Links ]

14. Y.-Di Zhao, D.-W. Pang, S. Hu, Z.-Li Wang, J.-Ke Cheng, H.-P. Dai, Talanta 49 (1999) 751.        [ Links ]

15. E. Palecek, M. Fojta, Anal. Chem. 73 (2001) 74A.        [ Links ]

16. Z. Sauerbrey, Z. Phy. 155 (1959) 206.        [ Links ]

17. S. Bruckenstein, M. Shay, Electrochim. Acta 30 (1985) 1295.        [ Links ]

18. A.M. Oliveira Brett, V. Diculescu, J.A.P. Piedade, Bioelectrochem. 55 (2002) 61.        [ Links ]

 

*Corresponding author. E-mail address: amtenreiro@fc.ul.pt

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons