SciELO - Scientific Electronic Library Online

 
vol.23 número2Corrosion Inhibition of Electrodeposited Tellurium and Palladium in Nitric Acid SolutionEvaluation of Corrosion Behavior of Copper in Chloride Media Using Electrochemical Impedance Spectroscopy (EIS) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Portugaliae Electrochimica Acta

versión impresa ISSN 0872-1904

Port. Electrochim. Acta v.23 n.2 Coimbra  2005

 

Complex Formation Between Alkaline-Earth Cations and Anthraquinone Crown Ethers in Methanol and Acetonitrile

 

J.M. Caridade Costa,a,* P.M.S. Rodriguesb

 

aDepartamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal.

bInstituto Politécnico da Guarda, P-6300 Guarda, Portugal.

 

 

Abstract

Formation of complexes of alkaline-earth cations with crown ethers containing an anthraquinone unit (AQ18C6 and AQ21C7) was investigated in methanol and acetonitrile solutions. Stability constants of the resulting complexes were estimated by means of potentiometric methods. The results obtained show the formation of complexes of the LM2+ type for all alkaline-earth ions; for the larger cations, (Sr2+ and Ba2+) and in excess of ligand, L2M2+ complexes were also detected. The most stable complexes were obtained with Ba2+ cation and for both ligands. The binding strength for the cations towards AQ18C6 and AQ21C7 ligands and in both solvents, increased in the order, Mg2+ < Ca2+ < Sr2+ < Ba2+. The results of this study suggest that on the 1:1 complexes, the size of the cation and its fit into the macrocyclic internal cavity of the ligand was a dominant factor on the coordination binding. The number of donor atoms in the ring of the macrocycle does not affect the binding strength and the AQ18C6 complexes have larger stability than the corresponding AQ21C7 complexes. The presence of an anthraquinone unit on the structure of the crown ether induced a decrease of the cation binding strength. The external carbonyl group of the ligand molecules was not involved on the coordination to the cation. Considering the two solvents, the complexes were more stable on acetonitrile, the solvent of weaker solvating capacity.

 

Keywords: alkaline-earth cations, crown ether derivatives, complexation, potentiometric methods.

 

 

Texto disponível em PDF

Full text only in PDF format

 

 

References

1.       D.J. Cram, Angew. Chem. Int. Ed. Engl. 25 (1986) 1039.        [ Links ]

2.       R.A. Bulman, Struct. Bonding 67 (1987) 91.        [ Links ]

3.       R.D. Hancock and A.E. Martell, Chem. Rev. 89 (1989) 1875.        [ Links ]

4.       L.F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes, CambridgeUniversity Press, 1989.        [ Links ]

5.       Y. Umezawa (Ed.), Handbook of Ion-Selective Electrodes: Selectivity Coefficients, CRC Press, Boca Raton, Florida, 1990.        [ Links ]

6.       R.M. Izatt, K. Pawlak, J.S. Bradshaw and R.L. Bruening, Chem. Rev. 95 (1995) 2529.        [ Links ]

7.       V.P. Solov’ev, N.N. Strakhova, O.A. Raevsky, V. Rüdiger and H.J. Schneider, J. Org. Chem. 61 (1996) 5221.        [ Links ]

8.       J.M. Lehn, Angew. Chem. Int. Ed. Engl. 27 (1988) 89.        [ Links ]

9.       Y. Inoue and G.W. Gokel, (Eds.), Cation Binding by Macrocycles: Complexation of Cationic Species by Crown Ethers, Marcel Dekker, New York, 1990.        [ Links ]

10.     H.C. Visser, D.N. Reinhoudt and F. de Jong, Chem. Soc. Rev. 23 (1994) 75.        [ Links ]

11.     J.S. Bradshaw and R.M. Izatt, Acc. Chem. Res. 30 (1997) 338.        [ Links ]

12.     P. Bühlmann, E. Pretsh and E. Bakker, Chem. Rev. 98 (1998) 1593.

13.     V.J. Gatto, K.A. Arnold, A.M. Viscariello, S.R. Miller, C.R. Morgan and G.W. Gokel, J. Org. Chem. 51 (1986) 5373.        [ Links ]

14.     B. Dietrich, J. Chem. Ed. 62 (1985) 954.        [ Links ]

15.     G.W. Gokel, Chem. Soc. Rev.  21 (1992) 39.        [ Links ]

16.     J.M. Caridade Costa, J. Jeyashri and D. Bethell, J. Electrochem. Soc. 351 (1993) 259.        [ Links ]

17.     J.M. Caridade Costa and D. Bethell, J. Coord. Chem. 46 (1999) 551.        [ Links ]

18.     D.A. Gustowski, V.J. Gatto, J. Mallen, L. Echegoyen and G.W. Gokel, J. Org. Chem. 52 (1987) 5172.        [ Links ]

19.     J.M. Caridade Costa and P.M.S. Rodrigues, Port. Electrochim. Acta 20 (2002) 167.        [ Links ]

20.     J.D. Lamb, R.M. Izatt, C.S. Swain and J.J Christensen, J. Am. Chem. Soc. 102 (1980) 475.        [ Links ]

21.     H.J. Bushmann, J. Sol. Chem. 17 (1988) 277.        [ Links ]

22.     P. Gans, A. Sabatini and A. Vacca, J. Chem. Soc., Dalton Trans. 1195 (1985).

23.     H.J. Buschmann, E. Cleve and E. Schollmeyer, J. Sol. Chem. 23 (1994) 569.        [ Links ]

24.     R.D. Shannon, Acta Crystallogr. A32 (1976) 751.        [ Links ]

25.     B.G. Cox, P. Firman and H. Schneider, Inorg. Chim. Acta 69 (1983) 161.        [ Links ]

26.     P.D.J. Grootenhuis and P.A. Kollman, J. Am. Chem. Soc. 111 (1989) 2152.        [ Links ]

27.     E. Karkhaneei, J. Zolgharnein, A. Afkhami and M. Shamsipur, J. Coord. Chem. 46 (1998) 1.

28.     Y. Takeda, Y. Ohyagi and S. Akabori, Bull. Chem. Soc. Jpn. 57 (1984) 3381.        [ Links ]

29.     H.J. Buschmann, J. Sol. Chem. 15 (1986) 453.        [ Links ]

 

* Corresponding author. E-mail address: caridade@ci.uc.pt

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons