SciELO - Scientific Electronic Library Online

 
vol.23 número4Inhibiting Effect of N-Cetyl N,N,N-Trimethyl Ammonium Bromide on Corrosion of Mild Steel in Acidic MediumElectrodeposition of Tin from Tartrate Solutions índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Portugaliae Electrochimica Acta

versão impressa ISSN 0872-1904

Port. Electrochim. Acta v.23 n.4 Coimbra  2005

 

Electrochemical Behaviour of Copper Nitroprusside Generated in situ Onto the Graphite Paste Electrode Surface, and its Application in the Determination of N-Acethylcysteine

  

D. Ribeiro do Carmo,* R. Moutinho da Silva,1 N. Ramos Stradiotto1

 

Departamento de Física e Química, UNESP-Universidade Estadual Paulista, Av. Brasil, 56-Centro, C. P. 31, 15385-000 Ilha Solteira- SP,  Brazil

1 Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP) CP 355, 14801-970 Araraquara –SP, Brazil

 

 

Abstract

Copper nitroprusside (CuNP) was generated on the graphite paste electrode using a new methodology of the preparation. The electrochemical studies were carried out bycyclic voltammetry technique. The cyclic voltammogram of the modified electrode, CuNP showed two redox couples (E0’)1=0.22 and (E0’)2=0.88 V vs. SCE attributed to Cu(I)/Cu(II) and Fe(II)(CN)5NO/Fe(III)(CN)5NO, respectively. The nature of the cation affect the (E0’)1 and (E0’)2, as current intensity, shifting the E0’ for more positive potentials, for two redox processes. The voltammograms obtained with different KCl concentrations (0.1-3.0 mol L-1) exhibit a shift in the (E0’)1 to more positive potentials; this change was linear with the supporting electrolyte concentrations change. It was verified that the (E0’)1 remained practically constant at pH between 6 and 3. However, a new process with (E0’)3 (0.48 V) appears at pH<3 and it was ascribed to formation of intermediary species.

The redox couple at (E0’)2=0.88 V presents an electrocatalytic response for N-acethylcysteine. The modified graphite paste electrode gives a linear response between5.0´10-4 to 1.0´10-2 mol L-1 of N-acethylcysteine with a detection limit of 4.5´10-4 (±5%) mol L-1 (n=3) and an amperometric sensitivity of 4.9 mA/mmol L-1.

The electrocatalytic oxidation of N-acethylcysteine compounds by the mediator has been used for the determination of N-acethylcysteine in a commercially pharmaceutical available product.

 

Keywords: copper nitroprusside, modified electrode, electrocatalysis, N- acethylcysteine, oxidation.

 

 

Texto disponível em PDF

Full text only in PDF format

 

 

References

1.      Z. Gao, J. Electroanal. Chem. 358 (1993) 161.        [ Links ]

2.      V.S. Ijeri, P.V. Jaiswal, A.K. Scrivastava, Anal. Chim. Acta 439 (2001) 291.        [ Links ]

3.      R. Garjonytê, A. Malinauskas, Sensors and Actuators B 46 (1998) 236.        [ Links ]

4.      A.C. Haubey, B.D. Malhotra,  Biosens. Bioelectron. 17 (2000) 441.          [ Links ]

5.      D.R. Shakaran, S.S. Narayanan, Bull. Electrochem. 4 (1998) 267.        [ Links ]

6.      S.A. Wring, J.P. Hart, Analyst 117 (1992) 1215.        [ Links ]

7.      S.M. Chen, J. Electroanal. Chem. 521 (2002) 29.        [ Links ]

8.      S.M. Golabi, H.R. Zare, M. Hamzehloo, Electroanalysis 14 (2002) 611.        [ Links ]

9.      N.R. De Toccani, K. Rajeshwar, R.O. Lesna, Electrochimica Acta 45 (2000) 3403.        [ Links ]

10.    N. Totir, C. Luca, S. Lupu, C. Lete, A.C. Ion Revue Roumaine de Chimie 46 (2001) 555.        [ Links ]

11.    K. Kalcher, J.M. Kanffmann, J. Wang, J. Scancara, K. Vytras, C. Neuhold, Z. Yang, Electroanalysis 7 (1995) 5.        [ Links ]

12.    H. Razmi-Nerbin, M.H. Pournaghi-Azar, J. Solid State Electrochem. 6 (2002) 126.        [ Links ]

13.    T.J. Maflate, T. Nyokong, J. Electroanal. Chem. 408 (1996) 213.        [ Links ]

14.    R.F. Bergstron, D.R. Kay, J.E. Wagner, J. Chromatogr. 222 (1981) 445.        [ Links ]

15.    M.E. Jobll, D.G. Williams, D.C. Johnson, Electroanalysis 9 (1997) 1397.        [ Links ]

16.    V.D. Ivanov, M.M. Kaplum, Russian J. Electrochem. 14 (1998) 559.        [ Links ]

17.    D.R. do Carmo, R.M. da Silva, N.R. Stradiotto, Ecl. Quim. 27 (2002)197.        [ Links ]

18.    D.R. do Carmo, R.M. da Silva, N.R. Stradiotto, Port. Electrochim. Acta 22  (2004) 71.        [ Links ]

19.    D.R. do Carmo, R.M. da Silva, N.R. Stradiotto, J. Braz. Chem. Soc. 14 (2003) 616.         [ Links ]

20.    R.P. Tomkiewicz, E.M. App, G.T. de Sanctis, M. Coffiner, P. Mães, B.K. Rubin, M. King, Pulm. Pharm. 8 (1995) 259.        [ Links ]

21.    A.J. Bard, L.R. Faulkner, Electrochemical Methods, New York: Wiley, 1980.        [ Links ]

22.    D. Engel, E.W Grabner, Ber. Bunsenges. Phys. Chem. 89 (1985) 982.        [ Links ]

23.    M. Jayalakshmi, H. Gomathy, G. P. Rao, Solvent and cationic effects as probes for investigating surface PB films, Bull. Electrochem. 12 (1996) 490.        [ Links ]

24.    K.D. Karlin,  Progress in inorganic chemistry, J. Wiley & Sons, 45 (1998).         [ Links ]

25.    N.F. Zakharchuk, B. Meyer, H. Henning, F. Scholz, A. Jaworksi, Z.J. Stojeck, Electroanal. Chem. 398 (1995) 23.        [ Links ]

26.    T.R. Ralph, M.L. Hitchman, J.P. Millington, F.C. Walsh, J. Electroanal. Chem. 375 (1994) 1.        [ Links ]

27.    W. Hou, E. Wang, J. Electroanal. Chem. 316 (1991) 155.        [ Links ]

28.    N. Sãpataru, B.V. Sarada, E. Popa, D.A. Tryk, A. Fujishima, Anal. Chem. 73 (2001) 514.        [ Links ]

 

 

* Corresponding author. E-mail address: docarmo@fqm.feis.unesp.br

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons