SciELO - Scientific Electronic Library Online

 
vol.25 número1Modification of the Pet-Membrane/Solution Interface: Effect on Electrical ParametersStudy of Molecules with Multiple Redox Centers Using Differential Staircase Voltammetry at Spherical Electrodes and Microelectrodes índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Portugaliae Electrochimica Acta

versión impresa ISSN 0872-1904

Port. Electrochim. Acta v.25 n.1 Coimbra  2007

 

Electrochemical Oxidation Mechanism of Photochromic Switches: Electrodimerisation, Ring Closure or Ring Opening?

Christophe Coudret,a,* Iluminada Gallardo,b, * Gonzalo Guirado , b,* Jean-Pierre Launay a,*

aNanoSciences Group, CEMES-CNRS, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4, France

bDepartament de Química, Universitat Autònoma de Barcelona 08193-Bellaterra (Barcelona), Spain

 

 

Abstract

Simple photochromic dithienylethylenes with either perfluoro or perhydro cyclopentene ring, and a variety of substituents have been prepared and their electrochemical behavior explored by cyclic voltammetry. All present two electron irreversible oxidation waves in their open form, but the radical cation of the open isomers can follow three different reaction pathways: dimerisation, ring closure, or ring reopening. Whereas the chloro derivative follows a dimerisation mechanism (EC2E mechanism), the phenylthio substituted compound displays an efficient oxidative ring closure (ECE or DISP1 mechanism). Interesting electrochromic behavior is associated with this compound, a redox process occurring in the range 0.5-1.5V is observed by monitoring the absorption species changes (colored species) in function of the applied potential. Furthermore, electrochromic properties are also found in the corresponding ring closed isomers. Depending on the substituents on the thiophene ring and the perfluro or perhydro cyclopentene ring, open isomers can be obtained from oxidation (chemical or electrochemical) of the corresponding ring closed isomers via EC mechanism. These observations should be taken into account for the potential design of three-state conjugated systems and photoelectrical molecular switching.

Keywords: diethienylethylenes, cyclic voltammetry, electrochemical oxidation mechanism, molecular switches, isomerization kinetics

 

Texto disponível em PDF

Full text only in PDF format

 

References

1. (a) T.R. Kelly, H.D. Silva and R.A. Silva, Nature 401 (1999) 150; (b) N. Koumura, R.W.J. Zijlstra, R.A. van Delden, N. Harada and B.L. Feringa, Nature  401 (1999) 152; (c) D.A. Leigh, J.K.Y. Wong, F. Dehez and F. Zerbetto, Nature 424 (2003) 174; (d) V. Balzani, M. Clemente-León, A. Credi, B. Ferrer, M. Venturi, A.H. Flood and J.F. Stoddart, Proc. Natl. Acad. Sci. USA 103 (2006) 1178.

2. (a) K. Uchida, M. Saito, A. Murakami, S. Nakamura, M. Irie,  Chem. Phys. Chem. 4 (2003) 11124; (b) K. Uchida, M. Saito, A. Murakami, S. Nakamura, M. Irie, Adv. Mat. 15 (2003) 121.

3. For an overview of electrochromism and its applications, see: (a) P.M.S. Monk, R.J. Mortimer,  D.R. Rosseinky, Electrochromism: Fundamentals and Applications, VCH, New York, 1995; (b) C. Bechinger, S. Ferrere,  A. Zaban, J. Sprague, B.A. Gregg, Nature 383 (1996) 608.

4. (a) M. Irie, Chem. Rev. 100 (2000) 1685; (b) H. Tian, S. Yang, Chem. Soc. Rev. 33 (2004) 85.        [ Links ]

5.(a) T. Peglow, S. Blechert, E. Steckhan, Chem. Eur. J. 4 (1998) 107, and references therein; (b) K. Chiba, T. Miura, S. Kim, Y. Kitano, M. Tada, J. Am. Chem. Soc. 123 (2001) 11314. 

6.(a) G. Guirado, C. Coudret, J.-P. Launay, J. Phys. Chem. C. (2007), in press; (b) G. Guirado, C. Coudret, J.-P. Launay, J. Phys. Chem. B. 109 (2005) 37, 1744;  (c) C. Coudret, G. Guirado, C. Hortholary, J.-P. Launay, N. Battaglini, H. Klein and P. Dumas, Mol. Cryst. Liq. Cryst. 431 (2005) 501 ; (d) S. Fraysse, C. Coudret, J.-P. Launay, Eur. J. Inorg. Chem. (2000) 1581; (e) B. Gorodetsky, H.D. Samachetty, R.L. Donkers, M.S.  Workentin, Angew. Chem. Int. Ed.  43  (2004) 2812; (f) A. Peters, N.R. Branda, J. Am. Chem. Soc. 125 (2003) 3404; (g) A. Peters,  N.R. Branda, Chem. Commun. (2003) 954; (h) X.H. Zhou, F.S. Zhang, P.Yuang, F. Sun, S.Z. Pu, F.Q. Zhao, C.H. Tung, Chemistry Letters 33 (2004) 1006.

7.(a) L.N. Lucas, J.J.D de Jong,  J.H.van Esch,  R.M.Kellogg,  B.L. Feringa, Eur. J. Org. Chem. (2003) 155; (b) L.N. Lucas, J.H. van Esch, R.M.  Kellogg, B.L. Feringa, Chem. Comm. (1998) 2313.

8.(a) L. Nadjo, J.-M. Savéant, J. Electroanal. Chem. 48 (1973) 113; (b) C.P. Andrieux, J.-M. Savéant, Electrochemical Reactions, in Investigation of Rates and Mechanism of Reactions, Techniques of Chemistry, (Ed: C. F. Bernasconi) Wiley, New York (1986), vol. 6, ch. 2.1, p. 305.

 

*Corresponding authors. E-mail addresses: coudret@cemes.fr, launay@cemes.fr, Iluminada.Gallardo@uab.es, Gonzalo.Guirado@uab.es

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons