SciELO - Scientific Electronic Library Online

 
vol.25 número1The Anodic Oxidation of Aluminium: Fabrication and CharacterizationElectrochemical Evaluations of Glutamate at a Gold Electrode índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Portugaliae Electrochimica Acta

versión impresa ISSN 0872-1904

Port. Electrochim. Acta v.25 n.1 Coimbra  2007

 

Temperature Behavior of the Electrical Conductivity of Emim-Based Ionic Liquids in Liquid and Solid States

J. Vila,a C. Franjo,a J.M. Pico,a L.M. Varela,b O. Cabeza*,a

a Dpto. de Física, Fac. de Ciencias, Universidade da Coruña. Campus da Zapateira s/n,

15072 A Coruña, SPAIN

b Grupo de Nanomateriales y Materia Blanda. Dpto. de Física de la Materia Condensada. Fac. de Física, Universidad de Santiago de Compostela. E-15782. Santiago de Compostela. SPAIN

 

Abstract

In this paper we present experimental measurements of the temperature dependence of the electrical conductivity, s, in four ionic liquid compounds (ILs) in both the liquid and solid states and at atmospheric pressure. The chemicals measured are composed by the 1-ethyl-3-methyl-imidazolium (EMIM+) cation, which has been combined with four different anions: Cl-, Br-, BF4- and ethyl sulfate (ES-). In the liquid state, the temperature dependence of s, for the four ILs follows the Vogel-Tamman-Fulcher (VTF) equation with high precision. Around the transition between the solid and liquid states, the electrical conductivity of the three ILs with lighter anions presents an hysteresis loop, that can be explained as the apparition of supercooled liquid. In contrast, the EMIM-ES presents a smooth transition, without any jump in the s, value or any hysteresis loop (probably because its melting point is reported to be below the minimum temperature measured by us). Finally, the jump in s, is not related with the glass transition because its temperature value is well below the minimum temperature measured, and at that glass transition temperature the s, value is below the resolution of our conductivity meter (2 nS/cm).

Keywords: ionic liquids, electrical conductivity, temperature, phase transition, hysteresis

 

Texto disponível em PDF

Full text only in PDF format

 

References

1. R.K. Rogers and K.R. Seddon (Editors), in “Ionic Liquids, Industrial Applications to Green Chemistry, ACS Symp. Series 818, Am. Chem. Soc., Washington, 2002.

2. F. Endres, “Ionic Liquids: Solvents for the Electrodeposition of Metals and Semiconductors”, Chem. Phys. Chem. 3 (2002) 144-154.

3. P. Wasserscheid and T. Welton (Editors), in “Ionic Liquids in Synthesis, Wiley-VCH, Verlag, Weinheim, 2003.

4. M. Ishikawa, T. Sugimoto, M. Kikuta, E. Ishiko and M. Kono, “Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries”, J. Power Sources 162 (2006) 658-662.

5. M. Galinski, A. Lewandowski and I. Stepniak, “Ionic liquids as electrolytes”, Electrochimica Acta 51 (2006) 5567-5580.

6. M.E. Van Valkenburg, R.L. Vaughn, M. Williams and J.S. Wilkes, “Thermochemistry of ionic liquid heat-transfer fluids”, Thermochimica Acta 425 (2005) 181-188.

7. S.U. Lee, J. Jung and Y-K. Han, “Molecular dynamics study of the ionic conductivity of 1-n-butyl-3-methylimidazolium salts as ionic liquids, Chemical Physics Letters 406 (2005) 332-340.

8. C. Rey-Castro and L.F. Vega, “Transport properties of the ionic liquid 1-ethyl-3-methylimidazolium chloride from equilibrium molecular dynamics simulation. The effect of temperature”, J. Phys. Chem. B 110 (2006) 14426-14435.

9. C. Rey-Castro, A.L. Tormo and L.F. Vega, “Effect of the flexibility and the anion in the structural and transport properties of ethyl-methyl-imidazolium ionic liquids”, Fluid Phase Equilibria (2006). In press.

10. C.A. Angell, in “Complex Behaviour of Glassy Systems”, edited by M. Rubí, C. Pérez-Vicente. Springer, Berlin, 1997.

11. M. Videa, Wu Xu, B. Geill, R. Marzke, C.A. Angell, “High Li+ self diffusivity and transport number in novel electrolyte solutions”, J. Electrochem. Soc. 148 (2001) A1352-A1356.

12. J. Vila, P. Ginés, J.M. Pico, C. Franjo, E. Jiménez, L.M. Varela and O. Cabeza, “Temperature dependence of the electrical conductivity in EMIM based ionic liquids. Evidence of Vogel-Tamman-Fülcher behavior”, Fluid Phase Equilibria 242 (2006) 141-146.

13. E. Rilo, J. Vila, P. Ginés, M. Domínguez-Pérez, L. Segade, C. Franjo and O. Cabeza, “Electrical conductivity and viscosity of EMIM-Br and EPYR-Br + AlBr3 ionic liquids and their precursors in aqueous solutions”. In EUCHEM 2004 Molten Salts Conference Proceedings (Acta Universitatis Wratislaviensis Nº 2693, Wroclaw, 2004). Pgs. 325-330.

14. G.F. Reynolds and C.J. Dymek, “Primary and secondary room temperature molten salt electrochemical cells”, J. Power Sources 15 (1985) 109-118.

15. M. Prego, E. Rilo, E. Carballo, C. Franjo, E. Jiménez and O. Cabeza, “Electrical conductivity data of alkanols from 273 to 333 K”, J. Molecular Liquids 102 (2003) 83-91.

16. W. Kauzmann, “The nature of the glassy state and the behavior of liquids at low temperatures”, Chem. Rev. 43 (1948) 219-256.

17. H. Vogel, Phys. Z. 22 (1921) 645-646.

18. G. Tamman and W. Hesse, “Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten”,Z. Anorg, Allg. Chem. 156 (1926) 245-257.

19. G.S. Fulcher, “Analysis of recent measurements of the viscosity of glasses”, J. Am. Ceram. Soc. 8 (1925) 339-355.

20. C. Alba-Simionesco, J. Fan and C.A. Angell, “Thermodynamic aspects of the glass transition phenomenon. II. Molecular liquids with variable interactions”, J. Chem. Phys. 110 (1999) 5262-5272.

21. J.H. Gibbs, in “Modern Aspects of the Vitreous State”, Butterworths Scientific Publications Ltd., London, 1960.

22. J.O'M. Bockris and A.K.N. Reddy, in “Modern Electrochemistry”, Plenum Press, New York, 1998, Chaps. 4 and 5.

23. T. Kitamura, “Quantum field theory of the liquid–glass transition”, Phys. Rep. 383 (2003) 1-94.

24. C.A. Angell and E.J. Sare, “Glass-forming composition regions and glass transition temperatures for aqueous electrolyte solutions”, J. Chem. Phys. 52 (1970) 1058-1068.

25. C.A. Angell, “The old problems of glass and the glass transition, and the many new twists”, Proc. Natl. Acad. Sci. USA 92 (1995) 6675-6682.

26. R.R. Nigmatullin, S.I. Osokin and G. Smith, “New approach in the description of dielectric relaxation phenomenon: correct deduction and interpretation of the Vogel–Fulcher–Tamman equation”, J. Physics: Condensed Matter 15 (2003) 3481-3503.

27. H. Every, A.G. Bishop, M. Forsyth and D.R. MacFarlane, “Ion diffusion in molten salt mixtures”, Electrochimica Acta 45 (2000) 1279-1284.

28. D.R. McFarlane, J. Sun, J. Golding, P. Meakin and M. Forsyth, “High conductivity molten salts based on the imide ion”, Electrochimica Acta 45 (2000) 1271-1278.

29. K. Ito, N. Nishina and H. Ohno, “Enhanced ion conduction in imidazolium-type molten salts”, Electrochimica Acta 45 (2000) 1295-1298.

 

* Corresponding author. E-mail address: oscabe@udc.es

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons