SciELO - Scientific Electronic Library Online

 
vol.25 issue2Design Bases for Modulated Complexation by ElectrochemistryCorrosion Inhibition of Mild Steel Using Brij-30 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Portugaliae Electrochimica Acta

Print version ISSN 0872-1904

Port. Electrochim. Acta vol.25 no.2 Coimbra  2007

 

Corrosion Resistance of Mo3Si with Niobium Additions in Hydrochloric Acid

C. Huicochea, I. Rosales, I.E. Castañeda, J. Uruchurtu*

Centro de Investigación en Ingeniería y Ciencias Aplicadas – UAEM; Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Mor; México

Received 11 April 2007; accepted 16 June 2007

 

Abstract

In the present work, the electrochemical behavior of molybdenum-silica-niobium alloy produced by arc cast technique is presented, keeping silica constant (at 24 wt %), using different niobium concentrations (5, 10, 15 & 20 wt %) as alloying elements. These samples were immersed in an electrochemical solution of 10 % by volume hydrochloric acid. The corrosion behavior was obtained using electrochemical techniques, namely: open circuit potential, polarization curves and electrochemical current noise. The potential behaviour as a function of time allows to determine the activity of the alloy as a function of its content, the polarization technique was used to obtain characteristic electrochemical parameters and the electrochemical current noise the type of attack while comparing them with the corrosion surface morphological features. Surface images showed different corrosion morphologies, being the most attacked the sample without niobium additions. It was found that niobium additions result in a better corrosion resistance when its concentration is increased in the alloy.

Keywords: polarization curves, electrochemical noise, hydrochloric acid, molybdenum, silica, niobium

 

Texto disponível em PDF

Full text only in PDF format

 

References

1. J.G. Gonzalez, I. Rosales, M. Casales, S. Serna, L. Martinez, Mat. Sci. and Eng. A 371 (2004) 217-221.        [ Links ]

2. I. Rosales, H. Martínez, Mat. Sci. and Eng. A 379 (2004) 245-250.

3. M.K. Meyer, M. Akinc, J. Am. Ceram. Soc. 79 ( 1996) 938-946.

4. M. Akinc, M.K. Meyer, M.J. Kramer, J.A. Thom, J.J. Huebsch, B. Cook, Mater. Sci. and Eng. A 261 (1999) 16.

5. J.H. Schneibel, M.J. Kramer, D.S. Easton, Scripta Material 46 (2002) 217-221.

6. C.T. Liu, J.H. Schneibel, L. Heatherly, “High Temperature Ordered Intermetallic Alloys VIII”, E.P. George, Eds., Mat. Res. Soc. Sym. Proc. (1999) p.552:KK6.2.

7. T.G. Nieh, C.T. Liu, Intermetallics 8 (2001) 885-889.

8. R. Cottis, S. Turgoose, “Electrochemical Impedance and Noise”. NACE International, Manchester, 1999.

9. M.G. Fontana, N.D. Greene, “Corrosion Engineering”. Third Edition; McGraw-Hill, 1987.

 

*Corresponding author. E-mail address: juch25@uaem.mx

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License