SciELO - Scientific Electronic Library Online

 
vol.25 número3Oil Soluble Corrosion Inhibitor on Microbiologically Influenced Corrosion in Diesel Transporting PipelineElectrogeneration of Poly-N-Methylpyrrole Tosylate Doped Films: Electrochemical and Morphological Study índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Portugaliae Electrochimica Acta

versão impressa ISSN 0872-1904

Port. Electrochim. Acta v.25 n.3 Coimbra  2007

 

Cyclic Voltammetric Investigation on the Catalysis of Electrodeposited Manganese Oxide on the Electrochemical Reduction of Oxygen (ORR) in Room Temperature Ionic Liquids (RTILs) of 1-Ethyl-3-Methylimidazolium Tetrafluorobroate (EMIBF4) on Glass Carbon (GC) Electrode

 K. Ding,a,c,*Q. Wanga and M. Zhaob

 

aChemistryCollege, Hebei Teacher’s University, Shijiazhuang 050016, P. R . China

bHuihua College, Teacher’s University, Shijiazhuang 050091, P. R . China

cDepartment of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan

 

 

Abstract

In this preliminary work, for the first time, the electrochemical oxygen reduction reaction (ORR) was investigated using cyclic voltammetry (CV) on the electrodeposited manganese oxide (MnOx)-modified glass carbon electrode (MnOx-GC) at room temperature ionic liquids (RTILs) of EMIBF4, i.e., 1-ethyl-3-methylimidazolium tetrafluorobroate (EMIBF4). The results demonstrated that, after being modified by MnOx on GC, the reduction peak current of oxygen was increased to some extent, while the oxidation peak current, corresponding to the oxidation of superoxide anion, O2-, was attenuated in some degree, suggesting that MnOxcatalyzed ORR in RTILs of EMIBF4, which is consistent with the results obtained in aqueous solution. To accelerate the electron transfer rate, multi-walled carbon nanotubes (MWCNTs) were modified on GC, and then MnOx was electrodeposited onto the MWCNTs-modified GC electrode to give rise to the MnOx /MWCNTs–modified GC electrode; consequently, the improved standard rate constant, κs,originated from the modified MWCNTs, along with the modification of electrodeposited MnOx, showed us a satisfactory electrocatalysis for ORR in RTILs of EMIBF4. In addition, not only for the MnOx-modified GC but also for the MnOx/ MWCNTs-modified GC, there is a novel small oxidation peak appearing at –0.2 V vs. solid Ag/AgCl, implying that the catalysis of MnOx for ORR in EMIBF4 is somewhat different from that observed in aqueous solution, though the exact interpretation is not achieved in this preliminary work. Initiating the catalysis of MnOxon ORR in RTILs is the main contribution of this work. Further discussions are in progress.

 

Keywords: manganese oxide (MnOx), multi-walled carbon nanotubes (MWCNTs), room temperature ionic liquids (RTILs), electrochemical oxygen reduction reaction (ORR), glass carbon (GC) electrode.

 

 

Texto disponível em PDF

Full text only in PDF format

 

 

References

1. P. Zoltowski, D.M. Drazic, L. Vorkapic, J. Appl. Electrochem. 3 (1973) 271.        [ Links ]

2. J.P. Brenet, J. Power Sources 4 (1979) 183.

3. K. Matsuki, H. Kamada, Electrochim. Acta 31 (1986) 13.

4. L. Mao, D. Zhang, T. Sotomura, K. Nakatsu, N. Koshiba, T. Ohsaka, Electrochim. Acta 48 (2003) 1015.

5. T. Welton, Chem. Rev. 99 (1999) 2071.

6. R.M. Lau, F. Rantwijl, K.R. Seddon, R.A. Sheldon, Org. Lett. 2 (2000) 189.

7.   M.T. Carter, C.L. Hussey, S.K.D Strubinger, R.A. Osteryong, Inorg. Chem.30 (1991) 1149.

8.   I.M Alnashef, M.L. Leonard, M.C. Kittle, M.A. Matthews, W. Weidner, Electrochem. Solid-State Lett. 4 (2001) D16.

9.   D. Zhang, T. Okajima, F. Matsumoto, T. Ohsaka, J. Electrochem. Soc., 151 (2004) D31.

10. L. Mao, T. Sotomura, K. Nakatsu, N. Koshiba, D. Zhang, T. Ohsaka, J. Electrochem. Soc. 149 (2002) A504.

11. M. Wu, G.A. Snook, G.Z. Chen, D.J. Fray, Electrochem. Commun.6 (2004) 499.

12. J.N. Barisci, G.G. Wallace, D.R. Macfarlane, R.H. Baughman, Electrochem. Commun.6(2004) 22.

13. J.S. Ye, Y. Wen, W.D. Zhang, L.M. Gan, G.Q. Xu, F.S. Sheu, Electrochem. Commun. 6 (2004) 66.

14. W. Chen, J. Zhao, J.Y. Lee, Z. Liu, Mater. Chem. Phys. 91 (2005) 124.

15. Z.P. Guo, Z.W. Zhao, H.K. Liu, S.X. Dou, Carbon 43 (2005) 1392.

16. B.M. Quinn, C. Dekker, S.G. Lemay, J. Am. Chem. Soc. 127 (2005) 6146.

17. M.J. Park, J.K. Lee, B.S. Lee, Y.W. Lee, I.S. Choi, S. Lee, Chem. Mater. 18 (2006) 1546.

18. R.G. Evans, O.V. Klymenko, S.A. Saddoughi, C. Hardacre, R.G. Compton, J. Phys. Chem. B. 108 (2004) 7878.

19. N.K. Beck, B. Steiger, G.G. Scherer, A. Wokaun, Fuel Cells6 (2006) 26.

20. A. Vanella, C.D. Giacomo, V. Sorrenti, A. Russo, C. Castorina, A. Campisi, M. Renis, J.R. Perez-Polo, Neurochem. Res. 18 (1993) 1337.

21. H.A. Kontos, E.P. Wei, J. Neurosurg. 64 (1986) 803.

22. C. Hu, S. Yuan and S. Hu, Electrochim. Acta 51 (2006) 3013.

23. D. Zhang, T. Sotomura, T. Ohsaka, Chem. Lett. 35 (2006)520.

24. M. Wu, G.A. Snook, G.Z. Chen, D.J. Fray, Electrochem. Commun. 6 (2004) 499.

25. D.T. Sawyer, G. Jr. Chiericato, C.T. Angelis, E.J. Jr. Nannl, T. Tsuchiya, Anal. Chem. 54 (1982) 1720.

26. R.S. Nicholson, Anal. Chem. 37 (1965) 1351.

27. Y. Katayama, H. Onodera, M. Yamagata, T. Miura, J. Electrochem. Soc. 151 (2004) A59.

28. Y. Chen, M.L. Zhang, Z.H. Shi, J. Electrochem. Soc. 152 (2005) A1272.

29. F. Zhao, X. Wu, M. Wang, Y. Liu, L. Gao, S. Dong, Anal. Chem. 76 (2004) 4960.

30. P. Yu, Y. Lin, L. Xiang, L. Su, J. Zhang, L. Mao, Langmuir 21 (2005) 9000.

31. V.H. Crespi, M.L. Cohen, A. Rubio, Phys. Rev. Lett. 79 (1997) 2093.

32. P.J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Adv. Mater. 11 (1999) 154.

 

 

* Corresponding author. E-mail address: dkeqiang@263.net

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons