SciELO - Scientific Electronic Library Online

 
vol.25 issue4Zinc-Nickel Alloy Electrodeposition: Influence of TriethanolamineElectrochemical Evaluation of Pipelines Materials of the Miravalles Geothermal Field in Costa Rica author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Portugaliae Electrochimica Acta

Print version ISSN 0872-1904

Port. Electrochim. Acta vol.25 no.4 Coimbra  2007

 

Comparison of Admittance Plots for Glass Carbon (GC) and Edge Plane Pyrolytie Graphite (EPPG) Electrodes in Three Typical Kinds of Electrolytes

K. Dinga,b * and Q. Wanga

a Chemistry College, Hebei Teacher’s University, Shijiazhuang 050016, P. R. China

b Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan

 

Received 1st September 2006; accepted 8th November 2006

 

Abstract

Electrochemical response of glass carbon (GC) and edge plane pyrolytic graphite (EPPG) electrodes was investigated using electrochemical impedance spectroscopy (EIS) method in three kinds of electrolytes, i.e., 0.1 M Na2SO4 (aqueous solution), 0.1 M tetraethylammonium perchlorate (TEAP) (acetonitrile solution) and pure room temperature ionic liquids (RTILs) of 1-ethyl-3-methylimidazolium tetrafluorobroate (EMIBF4). The marked difference in the admittance plots was exhibited by the GC electrode, suggesting that the double layer occurring on GC electrode differed from each other when immersed in different electrolytes, indirectly proving the meso-porosity structure of GC electrode. While for EPPG electrode, similar results were obtained in these three selected electrolytes, which were interpreted by the “defects” in EPPG electrode.

Keywords: glass carbon electrode, edge plane pyrolytic graph (EPPG) electrode, room temperature ionic liquids (RTILs), admittance plot.

 

Texto disponível em PDF

Full text only in PDF format

 

References

1. S. Yamada, H. Sato, Nature 193 (1962) 261.

2. M. Pérez-Mendoza, C. Schumacher, E. Suárez-Garcia, M.C. Almazán-Almazán, M. Domingo-García, E.J. Lópe-Gazrzón, N.A. Seaton, Carbon 44 (2006) 638.

3. Y. Korai, K. Sakamoto, I. Mochida, O. Hirai, Carbon 42 (2004) 219.

4. X. Wang, G.M. Zhang, Y.L. Zhang, F.Y. Li, R.C. Yu, C.Q. Jin, G.T. Zou, Carbon 41 (2003) 179.

5. C.E. Banks, T.J. Davies, G.G. Wildgoose, R.G. Compton, Chem. Commun. 17 (2005) 829.

6. C.E. Banks, R.G. Compton, Anal. Sci. 21 (2005) 1263.

7. C.E. Banks, R.R. Moore, T.J. Davies, R.G. Compton, Chem. Commun. 16 (2004) 1804.

8. C.E. Banks, A. Crossley, C. Salter, S.J. Wilkins, R.G. Compton, Angew. Chem. Int. Ed. 45 (2006) 2533.

9. T. Welton, Chem. Rev. 99 (1999) 2071.

10. A.D. Graves, D. Inman, Chem. Rev. 25 (1970) 357.

11. C. Nanjundiah, S.F. McDevitt, V.R. Koch, J. Electrochem. Soc. 144 (1997) 3392.

12. K.Q. Ding, Q. Wang, Z. Jia, R. Tong, X. Wang, H. Shao, J. Chin. Chem. Soc. 50 (2003) 387.

13. C.N. Cao, J.Q. Zheng, An introduction to electrochemical impedance spectroscopy, Science Publishing Company, 2002, page: from 7 to 15.        [ Links ]

14. K. Fukuyama, T. Nishizawa, K Nishikawa, Carbon 39 (2001) 2017.

 

* Corresponding author. E-mail address: dkeqiang@263.net

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License