SciELO - Scientific Electronic Library Online

 
vol.26 issue1Wastewaters by Electrochemical Advanced Oxidation Processes Using a BDD Anode and Electrogenerated H2O2 with Fe(II) and UVA Light as CatalystsElectrosynthesis and Characterisation of Poly(3,4-Ethylenedioxythiophene) Films Incorporating Ferrocene author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Portugaliae Electrochimica Acta

Print version ISSN 0872-1904

Port. Electrochim. Acta vol.26 no.1 Coimbra  2008

 

Concerning the Efficiency of Corrosion Inhibitors as Given by SVET

 

 

A. C. Bastos,* M. L. Zheludkevich, M. G. S. Ferreira

 

DECV/CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal

 

Received 21st May 2007; accepted 17th August 2007

 

 

Abstract

The possibility of obtaining corrosion inhibition efficiency from the Scanning Vibrating Electrode Technique (SVET) is investigated. Results are compared with those obtained by Electrochemical Impedance Spectroscopy (EIS) for the inhibition of iron and zinc with cerium nitrate and 1H-benzotriazole. Examples of good and bad estimations are given and an interpretation for the discrepancies observed is advanced. Large deviations occur when corrosion products are formed since this leads to an underestimation of the currents measured by SVET. Visual inspection of the samples may identify the cases more susceptible to deviation. The approach discussed here can be used to obtain more quantitative information from SVET measurements but should not replace the traditional ways used to determine the inhibition efficiency.

Keywords: SVET, EIS, corrosion, inhibitor efficiency.

 

 

Texto disponível em PDF

Full text only in PDF format

 

 

References

 

1. H. H. Uhlig, Ed. , The Corrosion Handbook, J. Wiley & Sons, New York,  1948, p. 909.         [ Links ]

2. E. Barsoukov, J. R. MacDonald, Eds. , Impedance Spectroscopy, 2nd ed. , Wiley Interscience, New Jersey, 2005, p. 344.

3. O. Bluh, B. Scott, Rev. Sci. Instr. 21 (1950) 867.

4. L. F. Jaffe, R. Nuccitelli, J. Cell Biol. 63 (1974) 614.

5. P. Somieski, W. Nagel, J. Exp. Biol. 201 (1998) 2489.

6. H. S. Isaacs, G. Kissel, J. Electrochem. Soc. 119 (1972) 1628.

7. H. S. Isaacs, Y. Ishikawa, in Electrochemical Techniques for Corrosion Engineering, R. Baboian, Ed. , NACE, Houston, 1986, p. 22.

8. H. S. Isaacs, Corros. Sci. 28 (1988) 547.

9. K. Ogle, V. Baudu, L. Garrides, X. Philippe, J. Electrochem. Soc. 147 (2000) 3654.

10. J. L. Yao, B. Ren, Z. F. Huang, P. G. Cao, R. A. Gu, Zhong-Qun Tian, Electrochim. Acta 48 (2003) 1263.

11. B. R. W. Hinton, L. Wilson, Corros. Sci. 29 (1989) 967.

 

 

* Corresponding author. E-mail address: acbastos@cv.ua.pt

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License